高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相关性和稀疏表示的运动想象脑电通道选择方法

孟明 董芝超 高云园 孔万增

孟明, 董芝超, 高云园, 孔万增. 基于相关性和稀疏表示的运动想象脑电通道选择方法[J]. 电子与信息学报, 2022, 44(2): 477-485. doi: 10.11999/JEIT210778
引用本文: 孟明, 董芝超, 高云园, 孔万增. 基于相关性和稀疏表示的运动想象脑电通道选择方法[J]. 电子与信息学报, 2022, 44(2): 477-485. doi: 10.11999/JEIT210778
MENG Ming, DONG Zhichao, GAO Yunyuan, KONG Wanzeng. Correlation and Sparse Representation Based Channel Selection of Motor Imagery Electroencephalogram[J]. Journal of Electronics & Information Technology, 2022, 44(2): 477-485. doi: 10.11999/JEIT210778
Citation: MENG Ming, DONG Zhichao, GAO Yunyuan, KONG Wanzeng. Correlation and Sparse Representation Based Channel Selection of Motor Imagery Electroencephalogram[J]. Journal of Electronics & Information Technology, 2022, 44(2): 477-485. doi: 10.11999/JEIT210778

基于相关性和稀疏表示的运动想象脑电通道选择方法

doi: 10.11999/JEIT210778
基金项目: 国家自然科学基金(61871427, 61971168, U20B2074)
详细信息
    作者简介:

    孟明:男,1975年生,副教授,硕士生导师,研究方向为脑机接口、机器人智能控制

    董芝超:男,1997年生,硕士生,研究方向为模式识别与脑机接口

    高云园:女,1980年生,副教授,硕士生导师,研究方向为生物信号处理、脑机接口

    孔万增:男,1980年生,教授,博士生导师,研究方向为人工智能与模式识别、脑机交互与认知计算

    通讯作者:

    孟明 mnming@hdu.edu.cn

  • 中图分类号: TN911.7; TP391

Correlation and Sparse Representation Based Channel Selection of Motor Imagery Electroencephalogram

Funds: The National Natural Science Foundation of China (61871427, 61971168, U20B2074)
  • 摘要: 在基于运动想象(MI)的脑机接口(BCI)中,通常采用较多通道的脑电信号(EEG)来提高分类精度,但其中会有包含与MI任务无关或冗余信息的通道,从而影响BCI的性能提升。该文针对运动想象脑电分类中的通道选择问题,提出一种采用相关性和稀疏表示对通道进行选择的方法(CSR-CS)。首先计算训练样本每个通道的皮尔逊相关系数来选择显著通道,然后提取显著通道所在区域的滤波器组共空间模式特征拼接成字典,利用由字典所得到的非零稀疏系数的个数表征每个区域的分类能力,选出显著区域所包含的显著通道作为最优通道,最后采用共空间模式和支持向量机分别进行特征提取与分类。在对BCI第3次竞赛数据集IVa和BCI第4次竞赛数据集I两个二分类MI任务的分类实验中,平均分类精度达到了88.61%和83.9%,表明所提通道选择方法的有效性和鲁棒性。
  • 图  1  CSR-CS方法框图

    图  2  稀疏表示方法

    图  3  单次实验时间轴

    图  4  通道区域划分

    图  5  数据集Ⅱ电极分布

    图  6  选择通道区域个数对分类精度的影响

    图  7  受试者aa在CSR-CS和AC-CSP方法上获得的最显著的两个特征的分布

    图  8  选择显著通道或区域与否对分类精度的影响

    表  1  数据集Ⅰ、数据集Ⅱ分类精度比较

    受试者方法
    CCS-RCSPCSP-R-MFFCCRCSR-CS
    aa82.5081.4378.5786.31
    al96.8092.4198.2197.74
    av71.1070.0072.4572.83
    aw92.9083.5787.0590.48
    ay93.9085.0093.2595.71
    均值87.4482.4885.9188.61
    a85.5081.5083.5092.00
    b67.0063.0072.5062.50
    f79.5079.0081.0086.30
    g94.5087.5083.5094.70
    均值81.6077.8080.1083.90
    p-value0.21<0.010.16
    下载: 导出CSV

    表  2  通道选择与否对分类准确率的影响

    方法数据集Ⅰ数据集Ⅱ
    aaalavaway均值abfg均值p-value
    AC-CSP76.1995.1266.0283.6994.8883.1882.5052.5085.1092.3078.10<0.01
    CSR-CS86.3197.7472.8390.4895.7188.6192.0062.5086.3094.7083.90
    下载: 导出CSV
  • [1] BIRBAUMER N. Brain–computer-interface research: Coming of age[J]. Clinical Neurophysiology, 2006, 117(3): 479–483. doi: 10.1016/j.clinph.2005.11.002
    [2] BLANKERTZ B, DORNHEGE G, KRAULEDAT M, et al. The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects[J]. NeuroImage, 2007, 37(2): 539–550. doi: 10.1016/j.neuroimage.2007.01.051
    [3] ALLISON B Z, KÜBLER A, and JIN Jing. 30+years of P300 brain-computer interfaces[J]. Psychophysiology, 2020, 57(7): e13569. doi: 10.1111/psyp.13569
    [4] HSU C C, YEH C L, LEE W K, et al. Extraction of high-frequency SSVEP for BCI control using iterative filtering based empirical mode decomposition[J]. Biomedical Signal Processing and Control, 2020, 61: 102022. doi: 10.1016/j.bspc.2020.102022
    [5] ANG K K and GUAN Cuntai. EEG-based strategies to detect motor imagery for control and rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(4): 392–401. doi: 10.1109/TNSRE.2016.2646763
    [6] RONG Yuying, WU Xiaojun, and ZHANG Yumei. Classification of motor imagery electroencephalography signals using continuous small convolutional neural network[J]. International Journal of Imaging Systems and Technology, 2020, 30(3): 653–659. doi: 10.1002/ima.22405
    [7] PARK Y and CHUNG W. A novel EEG correlation coefficient feature extraction approach based on demixing EEG channel pairs for cognitive task classification[J]. IEEE Access, 2020, 8: 87422–87433. doi: 10.1109/access.2020.2993318
    [8] BLANKERTZ B, LOSCH F, KRAULEDAT M, et al. The Berlin brain-computer interface: Accurate performance from first-session in BCI-naive subjects[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(10): 2452–2462. doi: 10.1109/TBME.2008.923152
    [9] LIU Ye, ZHANG Hao, CHEN Min, et al. A boosting-based spatial-spectral model for stroke patients’ EEG analysis in rehabilitation training[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(1): 169–179. doi: 10.1109/TNSRE.2015.2466079
    [10] ASENSIO-CUBERO J, GAN J Q, and PALANIAPPAN R. Multiresolution analysis over simple graphs for brain computer interfaces[J]. Journal of Neural Engineering, 2013, 10(4): 046014. doi: 10.1088/1741-2560/10/4/046014
    [11] FENG Jiankui, JIN Jing, DALY I, et al. An optimized channel selection method based on multifrequency CSP-Rank for motor imagery-based BCI system[J]. Computational Intelligence and Neuroscience, 2019, 2019: 8068357. doi: 10.1155/2019/8068357
    [12] JIN Jing, MIAO Yangyang, DALY I, et al. Correlation-based channel selection and regularized feature optimization for MI-based BCI[J]. Neural Networks, 2019, 118: 262–270. doi: 10.1016/j.neunet.2019.07.008
    [13] VARSEHI H and FIROOZABADI S M P. An EEG channel selection method for motor imagery based brain–computer interface and neurofeedback using Granger causality[J]. Neural Networks, 2021, 133: 193–206. doi: 10.1016/j.neunet.2020.11.002
    [14] HAN Jiuqi, ZHAO Yuwei, SUN Hongji, et al. A fast, open EEG classification framework based on feature compression and channel ranking[J]. Frontiers in Neuroscience, 2018, 12: 217. doi: 10.3389/fnins.2018.00217
    [15] CONA F, ZAVAGLIA M, ASTOLFI L, et al. Changes in EEG power spectral density and cortical connectivity in healthy and tetraplegic patients during a motor imagery task[J]. Computational Intelligence and Neuroscience, 2009, 2009: 279515. doi: 10.1155/2009/279515
    [16] HAMEDI M, SALLEH S, and NOOR A M. Electroencephalographic motor imagery brain connectivity analysis for BCI: A review[J]. Neural Computation, 2016, 28(6): 999–1041. doi: 10.1162/NECO_a_00838
    [17] ANG K K, CHIN Z Y, ZHANG Haihong, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface[C]. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 2008: 2390–2397.
    [18] SHIN Y, LEE S, AHN M, et al. Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification[J]. Biomedical Signal Processing and Control, 2015, 21: 8–18. doi: 10.1016/j.bspc.2015.05.007
    [19] LI Yuanqing, NAMBURI P, YU Zhuliang, et al. Voxel selection in fMRI data analysis based on sparse representation[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(10): 2439–2451. doi: 10.1109/TBME.2009.2025866
    [20] XU Chunyao, SUN Chao, JIANG Guoqian, et al. Two-Level multi-domain feature extraction on sparse representation for motor imagery classification[J]. Biomedical Signal Processing and Control, 2020, 62: 102160. doi: 10.1016/j.bspc.2020.102160
    [21] SREEJA S R, HIMANSHU, and SAMANTA D. Distance-based weighted sparse representation to classify motor imagery EEG signals for BCI applications[J]. Multimedia Tools and Applications, 2020, 79(19): 13775–13793. doi: 10.1007/s11042-019-08602-0
    [22] JIAO Yong, ZHANG Yu, CHEN Xun, et al. Sparse group representation model for motor imagery EEG classification[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(2): 631–641. doi: 10.1109/JBHI.2018.2832538
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  810
  • HTML全文浏览量:  460
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 修回日期:  2021-12-09
  • 录用日期:  2021-12-13
  • 网络出版日期:  2021-12-25
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回