高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进SSD的水下光学图像感兴趣目标检测算法研究

李宝奇 黄海宁 刘纪元 刘正君 韦琳哲

李宝奇, 黄海宁, 刘纪元, 刘正君, 韦琳哲. 基于改进SSD的水下光学图像感兴趣目标检测算法研究[J]. 电子与信息学报, 2022, 44(10): 3372-3378. doi: 10.11999/JEIT210761
引用本文: 李宝奇, 黄海宁, 刘纪元, 刘正君, 韦琳哲. 基于改进SSD的水下光学图像感兴趣目标检测算法研究[J]. 电子与信息学报, 2022, 44(10): 3372-3378. doi: 10.11999/JEIT210761
LI Baoqi, HUANG Haining, LIU Jiyuan, LIU Zhengjun, WEI Linzhe. Underwater Optical Image Interested Object Detection Model Based on Improved SSD[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3372-3378. doi: 10.11999/JEIT210761
Citation: LI Baoqi, HUANG Haining, LIU Jiyuan, LIU Zhengjun, WEI Linzhe. Underwater Optical Image Interested Object Detection Model Based on Improved SSD[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3372-3378. doi: 10.11999/JEIT210761

基于改进SSD的水下光学图像感兴趣目标检测算法研究

doi: 10.11999/JEIT210761
基金项目: 国家自然科学基金(11904386),国家基础科研计划重大项目(JCKY2016206A003), 中国科学院青年创新促进会(2019023)
详细信息
    作者简介:

    李宝奇:男,特别研究助理,研究方向为水声信号处理、目标检测/识别和跟踪、深度学习理论

    黄海宁:男,研究员,研究方向为水声信号与信息处理、目标探测、水声通信与网络等

    刘纪元:男,研究员,研究方向为水声信号处理、数字信号处理和水声成像与图像处理等

    刘正君:女,助理研究员,研究方向为水声信号处理等

    韦琳哲:男,助理研究员,研究方向为水声信号处理等

    通讯作者:

    黄海宁 hhn@mail.ioa.ac.cn

  • 中图分类号: TN911.73; TP391

Underwater Optical Image Interested Object Detection Model Based on Improved SSD

Funds: The National Natural Science Foundation of China (11904386), The Major Projects of the National Basic Scientific Research Plan (JCKY2016206A003), The Youth Innovation Promotion Association of Chinese Academy of Sciences (2019023)
  • 摘要: 针对轻量化目标模型SSD-MV2对水下光学图像感兴趣目标检测精度低的问题,该文提出一种通道可选择的轻量化特征提取模块(SEB)和一种卷积核可变形、通道可选择的特征提取模块(SDB)。与此同时,利用SEB模块和SDB模块分别重新设计了SSD-MV2的基础网络和附加特征提取网络,记作SSD-MV2SDB,并为其选择了合理的基础网络扩张系数和附加特征提取网络SDB模块数量。在水下图像感兴趣目标检测数据集UOI-DET上,SSD-MV2SDB比SSD-MV2检测精度提高3.04%。实验结果表明,SSD-MV2SDB适用于水下图像感兴趣目标检测任务。
  • 图  1  SEB模块和SDB模块

    图  2  SSD-MV2SDB目标检测模型

    图  3  SSD-MV2SDB对水下光学图像感兴趣目标的检测效果图

    表  1  水下图像目标检测数据集组成(幅)

    目标训练测试
    方框20319
    渔网22113
    蛙人21426
    UUV19422
    球体20320
    总计1035100
    下载: 导出CSV

    表  2  目标检测模型性能比较

    模型基础网络附加特征提取网络检测精度(%)参数大小(MB)检测时间(ms)
    SSD-MV2IRBIRB94.2410.27.20
    SSD-MV2SEBSEBSEB95.0911.010.01
    SSD-MV2IRBDSEBIRBD95.9714.813.52
    SSD-MV2SDBSEBSDB97.2814.913.86
    下载: 导出CSV

    表  3  基础网络扩张系数对SSD-MV2SDB性能的影响

    扩张系数检测精度(%)参数大小(MB)检测时间(ms)
    295.0312.113.66
    497.2814.913.86
    697.3317.713.90
    897.7620.414.12
    下载: 导出CSV

    表  4  附加特征提取网络SDB模块数量对SSD-MV2SDB性能的影响

    模块数量检测精度(%)参数大小(MB)检测时间(ms)
    095.0911.010.01
    196.0813.511.11
    297.0914.212.53
    397.2814.913.86
    下载: 导出CSV
  • [1] YEH C H, LIN Chuhan, KANG Liwei, et al. Lightweight deep neural network for joint learning of underwater object detection and color conversion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 6: 1–15. doi: 10.1109/TNNLS.2021.3072414
    [2] HMUE P M and PUMRIN S. Image enhancement and quality assessment methods in turbid water: A review article[C]. IEEE International Conference on Consumer Electronics, Bangkok, Thailand, 2019: 59–63.
    [3] CHEN Bin, LI Rong, BAI Wanjian, et al. Research on recognition method of optical detection image of underwater robot for submarine cable[C]. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2019: 1973–1976.
    [4] LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [5] ZHANG J X, YORDANOV B, GAUNT A, et al. A deep learning model for predicting next-generation sequencing depth from DNA sequence[J]. Nature Communications, 2021, 12: 4387. doi: 10.1038/s41467-021-24497-8
    [6] WANG Shiqiang. Efficient deep learning[J]. Nature Computational Science, 2021, 1(3): 181–182. doi: 10.1038/s43588-021-00042-x
    [7] LAGEMANN C, LAGEMANN K, MUKHERJEE S, et al. Deep recurrent optical flow learning for particle image velocimetry data[J]. Nature Machine Intelligence, 2021, 3(7): 641–651. doi: 10.1038/s42256-021-00369-0
    [8] LI Sichun, JIN Xin, YAO Sibing, et al. Underwater small target recognition based on convolutional neural network[C]. Global Oceans 2020: Singapore – U. S. Gulf Coast, Biloxi, USA, 2020: 1–7.
    [9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [10] GIRSHICK R. Fast R-CNN[C]. IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1440–1448.
    [11] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788.
    [13] SRITHAR S, PRIYADHARSINI M, SHARMILA F M, et al. Yolov3 Supervised machine learning framework for real-time object detection and localization[J]. Journal of Physics:Conference Series, 2021, 1916: 012032. doi: 10.1088/1742-6596/1916/1/012032
    [14] IANDOLA F N, MOSKEWICZ N W, ASHRAF K, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model size[EB/OL]. https://arxiv.org/abs/1602.07360v1, 2016.
    [15] SZEGEDY C, LIU Wei, JIA Yangqing, et al. . Going deeper with convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    [16] HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. https://arxiv.org/abs/1704.04861, 2017.
    [17] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520.
    [18] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [19] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 764–773.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  951
  • HTML全文浏览量:  593
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-11-15
  • 录用日期:  2021-11-18
  • 网络出版日期:  2021-11-19
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回