高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向可见光通信的硅基InGaN/GaN多量子阱波导定向耦合器光子集成芯片

李欣 李芸 王徐 沙源清 蒋成伟 王永进

李欣, 李芸, 王徐, 沙源清, 蒋成伟, 王永进. 面向可见光通信的硅基InGaN/GaN多量子阱波导定向耦合器光子集成芯片[J]. 电子与信息学报, 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758
引用本文: 李欣, 李芸, 王徐, 沙源清, 蒋成伟, 王永进. 面向可见光通信的硅基InGaN/GaN多量子阱波导定向耦合器光子集成芯片[J]. 电子与信息学报, 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758
LI Xin, LI Yun, WANG Xu, SHA Yuanqing, JIANG Chengwei, WANG Yongjin. Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758
Citation: LI Xin, LI Yun, WANG Xu, SHA Yuanqing, JIANG Chengwei, WANG Yongjin. Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758

面向可见光通信的硅基InGaN/GaN多量子阱波导定向耦合器光子集成芯片

doi: 10.11999/JEIT210758
基金项目: 中国博士后基金 (2018M640508),南京邮电大学1311人才计划,南京邮电大学宽带无线通信与传感网技术教育部重点实验室开放研究基金
详细信息
    作者简介:

    李欣:女,1984年生,副教授,研究方向为可见光通信及氮化镓光电子器件

    李芸:女,1998年生,硕士生,研究方向为可见光通信及氮化物光电子器件

    王徐:女,1998年生,硕士生,研究方向为可见光通信及氮化物光电子器件

    沙源清:男,1997年生,硕士生,研究方向为可见光通信及氮化物光电子器件

    蒋成伟:男,1997年生,硕士生,研究方向为可见光通信及氮化物光电子器件

    通讯作者:

    李欣 lixin1984@njupt.edu.cn

  • 中图分类号: TN929.1; TN256

Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication

Funds: China Postdoctoral Science Foundation (2018M640508), Talent Program of Nanjing University of Posts and Telecommunications, Open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education
  • 摘要: 利用可见光信号作为新型信息载体的光通信技术近些年来得到长足发展,为了开发新一代光子集成芯片作为可见光通信网络的终端器件,满足可见光信号发射、接收、传输与处理的复合需求,该文基于硅基InGaN/GaN多量子阱材料,设计了一种集成可见光波段微型发光二极管(LED)光源、波导定向耦合器、微型光电探测器于一体的光子集成芯片。该芯片利用InGaN/GaN多量子阱材料的发光探测共存现象,实现了上述复合功能。微型LED光源作为发射端,可以发射出蓝色波段的可见光信号,其发光强度受到注入电流的线性调制,可实现调幅可见光通信,适合作为可见光通信的发射端。微型LED光源发射的可见光信号传输进入波导定向耦合器,实现了片内有效传输耦合和光功率平均分配。经过耦合传输的可见光信号进入微型光电探测器,可以监测到与耦合传输的光信号强度相匹配的光电流。最后,可见光通信测试也表明该芯片可实现有效的可见光通信。该研究为发展面向可见光通信网络需求的复合功能光子集成芯片终端提供了更多可能性。
  • 图  1  光子集成芯片的结构与制备图

    图  2  硅基InGaN/GaN多量子阱波导定向耦合器光子集成芯片的光学显微镜图

    图  3  波导定向耦合器的扫描电子显微镜图

    图  4  波导定向耦合器的原子力显微镜图片

    图  5  微型LED光源的电学特性图

    图  6  微型LED光源的电致发光特性图

    图  7  不同注入电流下光子集成芯片的工作图片

    图  8  不同注入电流下驱动微型LED光源时光电探测器接收到的光电流曲线

    图  9  波导定向耦合器仿真模型与分析

    图  10  微型LED光源的可见光通信测试图

  • [1] MARET L, LAGRANGE A, and DUPRÉ L. Ultra-high speed optical wireless communications with gallium-nitride microLED[J]. The SPIE, 2021, 11706, 0O.
    [2] FERREIRA R X G, XIE Enyuan, MCKENDRY J J D, et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications[J]. IEEE Photonics Technology Letters, 2016, 28(19): 2023–2026. doi: 10.1109/LPT.2016.2581318
    [3] CHEN S W H, HUANG Yuming, CHANG Yunhan, et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication[J]. ACS Photonics, 2020, 7(8): 2228–2235. doi: 10.1021/acsphotonics.0c00764
    [4] 李荣玲, 商慧亮, 雷雨, 等. 高速可见光通信中关键使能技术研究[J]. 激光与光电子学进展, 2013, 50(5): 050003.

    LI Rongling, SHANG Huiliang, LEI Yu, et al. Research of key enabling technologies for high-speed visible-light communication[J]. Laser &Optoelectronics Progress, 2013, 50(5): 050003.
    [5] AMIRI I S, PALAI G, ALZUBI J A, et al. Chip to chip communication through the photonic integrated circuit: A new paradigm to optical VLSI[J]. Optik, 2020, 202: 163588. doi: 10.1016/j.ijleo.2019.163588
    [6] TANG Yuling and CHEN Jun. High responsivity of Gr/ n-Si Schottky junction near-infrared photodetector[J]. Superlattices and Microstructures, 2021, 150: 106803. doi: 10.1016/J.SPMI.2021.106803
    [7] HE Xiangyu, XIE Enyuan, ISLIM M S, et al. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm[J]. Photonics Research, 2019, 7(7): B41–B47. doi: 10.1364/PRJ.7.000B41
    [8] LIU Xinyu, LIU Dajian, and DAI Daoxin. Silicon polarization beam splitter at the 2 μm wavelength band by using a bent directional coupler assisted with a nano-slot waveguide[J]. Optics Express, 2020, 29(2): 2720–2726. doi: 10.1364/OE.403932
    [9] BAYAL I and MAHAPATRA P K. Simulation of quantum coherence dynamics in macroscopic domain using a three-waveguide directional coupler[J]. Journal of Modern Optics, 2020, 67(10): 869–879. doi: 10.1080/09500340.2020.1780641
    [10] 葛义蓉. 定向耦合器在微波传输系统中的应用[J]. 航空计测技术, 2001, 21(1): 31–32,38. doi: 10.3969/j.issn.1674-5795.2001.01.009

    GE Yirong. Application of directional coupler to microwave transmission system[J]. Aviation Metrology &Measurement Technology, 2001, 21(1): 31–32,38. doi: 10.3969/j.issn.1674-5795.2001.01.009
    [11] 蒋平英. 脊波导定向耦合器的设计与研究[D]. [硕士论文], 电子科技大学, 2007.

    JIANG Pingying. Design and research of ridge waveguide directional coupler[D]. [Master dissertation], University of Electronic Science and Technology, 2007.
    [12] TUGENDHAFT I, BORNSTEIN A, WEISSMAN Y, et al. Coupling efficiency of directional fiber couplers in the mid-infrared[J]. Applied Spectroscopy, 1996, 50(7): 906–909. doi: 10.1366/0003702963905420
    [13] JANG H S, PARK K N, and LEE K S. Characterization of tunable photonic crystal fiber directional couplers[J]. Applied Optics, 2007, 46(18): 3688–3693. doi: 10.1364/AO.46.003688
    [14] MALKA D, DANAN Y, RAMON Y, et al. A photonic 1 × 4 power splitter based on multimode interference in silicon–gallium-nitride slot waveguide structures[J]. Materials, 2016, 9(7): 516. doi: 10.3390/ma9070516
    [15] HAMIDAH M and PURNAMANINGSIH R W. An S-bend based optical directional coupler using GaN semiconductor[C]. 2019 IEEE International Conference on Innovative Research and Development (ICIRD), Jakarta, Indonesia, 2019: 1–4.
    [16] PURNAMANINGSIH R W, HAMIDAH M, FITHRIATY D, et al. A GaN/sapphire 1 × 4 optical power splitter using five rectangular waveguide for underwater application[C]. 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Bangkok, Thailand, 2018: 1–5.
    [17] ZHANG Yanfeng, MCKNIGHT L, WATSON I M, et al. Compact large-cross-section GaN directional couplers[C]. IEEE Photonic Society 24th Annual Meeting, Arlington, USA, 2011: 407–408.
    [18] THUBTHIMTHONG B, SASAKI T, and HANE K. Photonic-crystal-waveguide-assisted directional couplers for hybrid Si/GaN nanophotonics[C]. 2014 International Conference on Optical MEMS and Nanophotonics, Glasgow, UK, 2014: 201–202.
    [19] ENGIN E, O'BRIEN J L, and CRYAN M J. Design and analysis of a gallium nitride-on-sapphire tunable photonic crystal directional coupler[J]. Journal of the Optical Society of America B, 2012, 29(6): 1157–1164. doi: 10.1364/JOSAB.29.001157
    [20] YUAN Jialei, GAO Xumin, YANG Yongchao, et al. GaN directional couplers for on-chip optical interconnect[J]. Semiconductor Science and Technology, 2017, 32(4): 045001. doi: 10.1088/1361-6641/aa59ef
    [21] PARK J Y, LEE J H, JUNG S, et al. InGaN/GaN-based green-light-emitting diodes with an inserted InGaN/GaN-graded superlattice layer[J]. Physica Status Solidi (a) , 2016, 213(6): 1610–1614. doi: 10.1002/pssa.201533092
    [22] DAS D, AIELLO A, GUO Wei, et al. InGaN/GaN quantum dots on silicon with coalesced nanowire buffer layers: A potential technology for visible silicon photonics[J]. IEEE Transactions on Nanotechnology, 2020, 19: 571–574. doi: 10.1109/TNANO.2020.3007732
  • 加载中
图(10)
计量
  • 文章访问数:  1114
  • HTML全文浏览量:  368
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2022-03-22
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回