高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于国产密码算法SM9的可追踪属性签名方案

唐飞 凌国玮 单进勇

唐飞, 凌国玮, 单进勇. 基于国产密码算法SM9的可追踪属性签名方案[J]. 电子与信息学报, 2022, 44(10): 3610-3617. doi: 10.11999/JEIT210747
引用本文: 唐飞, 凌国玮, 单进勇. 基于国产密码算法SM9的可追踪属性签名方案[J]. 电子与信息学报, 2022, 44(10): 3610-3617. doi: 10.11999/JEIT210747
TANG Fei, LING Guowei, SHAN Jinyong. Traceable Attribute Signature Scheme Based on Domestic Cryptographic SM9 Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3610-3617. doi: 10.11999/JEIT210747
Citation: TANG Fei, LING Guowei, SHAN Jinyong. Traceable Attribute Signature Scheme Based on Domestic Cryptographic SM9 Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3610-3617. doi: 10.11999/JEIT210747

基于国产密码算法SM9的可追踪属性签名方案

doi: 10.11999/JEIT210747
基金项目: 国家自然科学基金(61702067),重庆市自然科学基金(cstc2020jcyj-msxmX0343)
详细信息
    作者简介:

    唐飞:男,副教授,研究方向为公钥密码学、隐私计算、区块链等

    凌国玮:男,硕士生,研究方向为公钥密码学、隐私计算等

    单进勇:男,博士,研究方向为密码理论与应用、隐私计算等

    通讯作者:

    唐飞 tangfei@cqupt.edu.cn

  • 中图分类号: TP309.7

Traceable Attribute Signature Scheme Based on Domestic Cryptographic SM9 Algorithm

Funds: The National Natural Science Foundation of China (61702067), The Chongqing Natural Science Foundations (cstc2020jcyj-msxmX0343)
  • 摘要: 国产密码算法SM9是我国自主设计的标识密码方案,现已受到各界的广泛关注。为了解决现有属性签名(ABS)方案验签效率不高这一问题,该文基于国密SM9算法构造新的支持树形访问策略的属性签名方案,该方案的验签操作仅需1次双线性对映射和1次指数运算。此外,所提方案具有签名者身份可追踪功能,防止恶意签名者利用属性签名的匿名性进行非法签名操作,从而避免传统属性签名中无条件匿名性下的签名滥用问题。安全分析结果表明所提方案在随机谕言机模型下具有不可伪造性,同时也可抗合谋攻击。与现有的可追踪属性签名方案相比,所提方案的追踪算法效率更高,签名与验签开销也更低。实验结果表明,所提方案验签算法的计算复杂度与策略规模无关,完成1次验签算法仅需2 ms。
  • 表  1  与现有的ABS方案的功能对比

    方案访问策略身份可追踪性
    文献[20]门限策略
    文献[21]树形策略
    文献[22]门限策略
    文献[23]树形策略
    本文方案树形策略
    下载: 导出CSV

    表  2  与现有的ABS方案的效率对比

    方案${{\rm{TASig}}}$${{\rm{TAVer}}}$
    文献[20]$(2{S_{\boldsymbol{\varUpsilon}} } + 2)\exp $$2{S_{\boldsymbol{\varUpsilon}} }{E} + \xi \exp $
    文献[21]$(7{S_{\boldsymbol{\varUpsilon}} } + 14)\exp $$(2{S_{\boldsymbol{\varUpsilon}} } + 6)\exp + 4{E} $
    文献[22]$12\exp $$({S_{\boldsymbol{\varUpsilon}} } + 5)\exp + 4{E} $
    文献[23]$(2{S_{\boldsymbol{\varUpsilon}} } + d + 2)\exp $$({S_{\boldsymbol{\varUpsilon}} } + 2){E} $
    本文方案$|{S_{\boldsymbol{\varUpsilon}} }|{ {{\rm{sca}}} _1} + \exp$${E} + \exp $
    下载: 导出CSV

    表  3  基本运算效率对比(ms)

    运算效率
    ${ {{\rm{sca}}} _1}$0.102
    ${ {{\rm{sca}}} _2}$0.347
    $\exp $0.755
    ${ {{E} } }$0.842
    下载: 导出CSV

    表  4  本文所提方案实验结果(ms)

    ${\text{|} }{S_{\boldsymbol{\varUpsilon}} }{\text{|} }$${\text{Setup}}$${\text{KeyGen}}$${{\rm{TASig}}}$${\text{TAVer}}$
    51.1260.9871.2971.962
    101.1241.4881.8161.968
    151.1191.9972.3131.951
    201.1252.7362.8301.949
    251.1283.1223.3561.962
    下载: 导出CSV

    表  5  与现有的ABS方案的通信与存储对比

    方案系统参数主私钥用户私钥签名
    文献[20]$3\left| {{G_1}} \right| + \left| {{G_T}} \right|$$\left| {{Z_N}} \right|$$(2{S_{\boldsymbol{\varUpsilon}} } + 1)\left| {{G_1}} \right|$$(2{S_{\boldsymbol{\varUpsilon}} } + 2)\left| {{G_1}} \right|$
    文献[21]$4\left| {{G_1}} \right| + 2\left| {{G_T}} \right|$$\left| {{Z_N}} \right|$$4{S_{\boldsymbol{\varUpsilon}} }\left| {{G_1}} \right|$$3\left| {{G_T}} \right| + 4\left| {{Z_N}} \right|$
    文献[22]$2\left| {{G_1}} \right| + \left| {{G_T}} \right|$$2\left| {{Z_N}} \right|$$3{S_{\boldsymbol{\varUpsilon}} }\left| {{G_1}} \right|$$4\left| {{G_1}} \right|$
    文献[23]$3\left| {{G_1}} \right| + \left| {{G_T}} \right|$$\left| {{Z_N}} \right|$$(2{A_{{\rm{ID}}} } + 1)\left| { {G_1} } \right|$$({S_{\boldsymbol{\varUpsilon}} } + 2)\left| {{G_1}} \right|$
    本文方案$\left| {{G_1}} \right| + \left| {{G_2}} \right| + \left| {{G_T}} \right|$$\left| {{Z_N}} \right|$${S_{\boldsymbol{\varUpsilon}} }\left| {{G_1}} \right| + \left| {{G_2}} \right|$${S_{\boldsymbol{\varUpsilon}} }\left| {{G_1}} \right| + \left| {{G_2}} \right| + \left| {{Z_N}} \right|$
    下载: 导出CSV
  • [1] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32918.4-2016 信息安全技术 SM2椭圆曲线公钥密码算法 第4部分: 公钥加密算法[S]. 北京: 中国标准出版社, 2016.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. GB/T 32918.4-2016. Information security technology-public key cryptographic algorithm SM2 based on elliptic curves-Part 4: Public key encryption algorithm[S]. Beijing: China Standards Press, 2016.
    [2] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32905-2016 信息安全技术 SM3密码杂凑算法[S]. 北京: 中国标准出版社, 2016.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. GB/T 32905-2016 Information security techniques-SM3 cryptographic hash algorithm[S]. Beijing: China Standards Press, 2016.
    [3] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32907-2016 信息安全技术 SM4分组密码算法[S]. 北京: 中国标准出版社, 2016.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. GB/T 32907-2016 Information security technology-SM4 block cipher algorithm[S]. Beijing: China Standards Press, 2016.
    [4] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 38635.2-2020 信息安全技术 SM9标识密码算法 第2部分: 算法[S]. 北京: 中国标准出版社, 2020.

    State Administration of Market Supervision and State Standardization Administration Committee. GM/T 38635.2-2020 Information security technology—Identity-based cryptographic algorithms SM9—Part 2: Algorithms[S]. Beijing: China Standards Press, 2020.
    [5] ELGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms[J]. IEEE Transactions on Information Theory, 1985, 31(4): 469–472. doi: 10.1109/TIT.1985.1057074
    [6] 杨亚涛, 蔡居良, 张筱薇, 等. 基于SM9算法可证明安全的区块链隐私保护方案[J]. 软件学报, 2019, 30(6): 1692–1704. doi: 10.13328/j.cnki.jos.005745

    YANG Yatao, CAI Juliang, ZHANG Youwei, et al. Privacy preserving scheme in block chain with provably secure based on SM9 algorithm[J]. Journal of Software, 2019, 30(6): 1692–1704. doi: 10.13328/j.cnki.jos.005745
    [7] 马晓婷, 马文平, 刘小雪. 基于区块链技术的跨域认证方案[J]. 电子学报, 2018, 46(11): 2571–2579. doi: 10.3969/j.issn.0372-2112.2018.11.002

    MA Xiaoting, MA Wenping, and LIU Xiaoxue. A cross domain authentication scheme based on blockchain technology[J]. Acta Electronica Sinica, 2018, 46(11): 2571–2579. doi: 10.3969/j.issn.0372-2112.2018.11.002
    [8] 林超, 何德彪, 谢翔, 等. 基于SM9数字签名算法的范围证明协议设计[J]. 软件学报, http://www.jos.org.cn/1000-9825/0000.htm.

    LIN Chao, HE Debiao, XIE Xiang, et al. The design of digital signature-based range proof protocols[J]. Journal of Software, http://www.jos.org.cn/1000-9825/0000.htm.
    [9] MU Yongheng, XU Haixia, LI Peili, et al. Secure two-party SM9 signing[J]. Science China Information Sciences, 2020, 63: 189101. doi: 10.1007/s11432-018-9589-x
    [10] 涂彬彬, 王现方, 张立廷. 两种分布式SM2/9算法应用[J]. 密码学报, 2020, 7(6): 826–838. doi: 10.13868/j.cnki.jcr.000409

    TU Binbin, WANG Xianfang, and ZHANG Liting. Two distributed applications of SM2 and SM9[J]. Journal of Cryptologic Research, 2020, 7(6): 826–838. doi: 10.13868/j.cnki.jcr.000409
    [11] 魏荣, 郑昉昱, 林璟锵. 支持国密算法的JavaScript通用密码库的实现[J]. 密码学报, 2020, 7(5): 594–604. doi: 10.13868/j.cnki.jcr.000392

    WEI Rong, ZHENG Fangyu, and LIN Jingqiang. Implementation of a general-purpose cryptography library supporting domestic algorithm with JavaScript[J]. Journal of Cryptologic Research, 2020, 7(5): 594–604. doi: 10.13868/j.cnki.jcr.000392
    [12] 赖建昌, 黄欣沂, 何德彪. 一种基于商密SM9的高效标识广播加密方案[J]. 计算机学报, 2021, 44(5): 897–907. doi: 10.11897/SP.J.1016.2021.00897

    LAI Jianchang, HUANG Xinyi, and HE Debao. An efficient identity-based broadcast encryption scheme based on SM9[J]. Chinese Journal of Computers, 2021, 44(5): 897–907. doi: 10.11897/SP.J.1016.2021.00897
    [13] 赖建昌, 黄欣沂, 何德彪, 等. 基于商密SM9的高效标识签密[J]. 密码学报, 2021, 8(2): 314–329. doi: 10.13868/j.cnki.jcr.000440

    LAI Jianchang, HUANG Xinyi, HE Debao, et al. An efficient identity-based signcryption scheme based on SM9[J]. Journal of Cryptologic Research, 2021, 8(2): 314–329. doi: 10.13868/j.cnki.jcr.000440
    [14] JI Honghan, ZHANG Hongjie, SHAO Lisong, et al. An efficient attribute-based encryption scheme based on SM9 encryption algorithm for dispatching and control cloud[J]. Connection Science, 2021, 33(4): 1094–1115. doi: 10.1080/09540091.2020.1858757
    [15] BETHENCOURT J, SAHAI A, and WATERS B. Ciphertext-policy attribute-based encryption[C]. 2007 IEEE symposium on security and privacy (SP'07), Berkeley, USA, 2007: 321–334.
    [16] MAJI H K, PRABHAKARAN M, and ROSULEK M. Attribute-based signatures[C]. Cryptographers’ track at the RSA conference. San Francisco, USA, 2011: 376–392.
    [17] LI Youhuizi, CHEN Xu, YIN Yuyu, et al. SDABS: A flexible and efficient multi-authority hybrid attribute-based signature scheme in edge environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1892–1906. doi: 10.1109/TITS.2020.3038910
    [18] SHI Wenbo. A provable secure sealed‐bid multi‐attribute auction scheme under semi‐honest model[J]. International Journal of Communication Systems, 2014, 27(12): 3738–3747. doi: 10.1002/dac.2571
    [19] GUO Rui, SHI Huixian, ZHAO Qinglan, et al. Secure attribute-based signature scheme with multiple authorities for blockchain in electronic health records systems[J]. IEEE Access, 2018, 6: 11676–11686. doi: 10.1109/ACCESS.2018.2801266
    [20] SU Jinshu, CAO Dan, ZHAO Baokang, et al. ePASS: An expressive attribute-based signature scheme with privacy and an unforgeability guarantee for the Internet of Things[J]. Future Generation Computer Systems, 2014, 33: 11–18. doi: 10.1016/j.future.2013.10.016
    [21] CUI Hui, DENG R H, and WANG Guilin. An attribute-based framework for secure communications in vehicular ad hoc networks[J]. IEEE/ACM Transactions on Networking, 2019, 27(2): 721–733. doi: 10.1109/TNET.2019.2894625
    [22] SU Qianqian, ZHANG Rui, XUE Rui, et al. Revocable attribute-based signature for blockchain-based healthcare system[J]. IEEE Access, 2020, 8: 127884–127896. doi: 10.1109/ACCESS.2020.3007691
    [23] LI Jin, AU M H, SUSILO W, et al. Attribute-based signature and its applications[C]. The 5th ACM Symposium on Information, Computer and Communications Security, New York, USA, 2010: 60–69.
    [24] BONEH D and FRANKLIN M. Identity-based encryption from the Weil pairing[C]. 21st Annual International Cryptology Conference, Santa Barbara, USA, 2001: 213–229.
    [25] BONEH D and BOYEN X. Short signatures without random oracles[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Switzerland, Interlaken, 2004: 56–73.
    [26] ESCALA A, HERRANZ J, and MORILLO P. Revocable attribute-based signatures with adaptive security in the standard model[C]. 4th International conference on cryptology in Africa, Dakar, Senegal, 2011: 224–241.
    [27] SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612–613. doi: 10.1145/359168.359176
  • 加载中
表(5)
计量
  • 文章访问数:  1109
  • HTML全文浏览量:  439
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 修回日期:  2022-01-02
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-02-01
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回