高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于序列密码的强PUF抗机器学习攻击方法

汪鹏君 连佳娜 陈博

汪鹏君, 连佳娜, 陈博. 基于序列密码的强PUF抗机器学习攻击方法[J]. 电子与信息学报, 2021, 43(9): 2474-2481. doi: 10.11999/JEIT210726
引用本文: 汪鹏君, 连佳娜, 陈博. 基于序列密码的强PUF抗机器学习攻击方法[J]. 电子与信息学报, 2021, 43(9): 2474-2481. doi: 10.11999/JEIT210726
Pengjun WANG, Jiana LIAN, Bo CHEN. Sequence Cipher Based Machine Learning-Attack Resistance Method for Strong-PUF[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2474-2481. doi: 10.11999/JEIT210726
Citation: Pengjun WANG, Jiana LIAN, Bo CHEN. Sequence Cipher Based Machine Learning-Attack Resistance Method for Strong-PUF[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2474-2481. doi: 10.11999/JEIT210726

基于序列密码的强PUF抗机器学习攻击方法

doi: 10.11999/JEIT210726
基金项目: 国家重点研发计划项目(2018YFB2202100),国家自然科学基金(62174121, 61904125),温州市基础性科研项目(G20190006, G20210023)
详细信息
    作者简介:

    汪鹏君:男,1966年生,教授,研究方向为集成电路设计、信息安全等技术及其相关理论

    连佳娜:女,1996年生,硕士生,研究方向为物理不可克隆函数攻击与防御

    陈博:男,1981年生,讲师,研究方向为密码芯片攻击和防御理论及其VLSI实现

    通讯作者:

    汪鹏君 wangpengjun@wzu.edu.cn

  • 中图分类号: TN918.2; TP309

Sequence Cipher Based Machine Learning-Attack Resistance Method for Strong-PUF

Funds: The National Key Research and Development Program of China (2018YFB2202100), The National Natural Science Foundation of China (62174121, 61904125), The Wenzhou Basic Scientific Research Projects (G20190006, G20210023)
  • 摘要: 物理不可克隆函数(Physical Unclonable Function, PUF)在信息安全领域具有极其重要的应用前景,然而也存在其自身安全受机器学习攻击等方面的不足。该文通过对PUF电路和密码算法的研究,提出一种基于序列密码的强PUF抗机器学习攻击方法。首先,通过构造滚动密钥生成器产生随机密钥,并与输入激励进行混淆;然后,将混淆后的激励通过串并转换电路作用于强PUF,产生输出响应;最后,利用Python软件仿真和FPGA硬件实现,并分析其安全性和统计特性。实验结果表明,当建模所用激励响应对(Challenge Response Pairs, CRPs)高达106组时,基于逻辑回归、人工神经网络和支持向量机的攻击预测率接近50%的理想值。此外,该方法通用性强、硬件开销小,且不影响PUF的随机性、唯一性以及可靠性。
  • 图  1  APUF结构

    图  2  机器学习中线性与非线性问题

    图  3  序列密码结构

    图  4  基于序列密码的强PUF抗ML攻击框图

    图  5  基于序列密码的强PUF抗ML攻击电路

    图  6  LR,ANN,SVM的攻击预测率

    图  7  PUF输出响应分布情况

    图  8  自相关性测试结果

    图  9  片间汉明距离与片内汉明距离拟合曲线

    表  1  预测率与统计特性的实验结果比较(%)

    PUF结构实现方法硬件开销随机性唯一性可靠性LRANNSVM
    APUF仿真50.2149.7698.8698.6998.4398.71
    FPGA19-Slice50.7349.5698.8297.9497.4797.28
    2XOR-APUF仿真49.6750.6198.9298.3898.5498.41
    FPGA39-Slice50.1349.3598.7496.9196.6396.74
    3XOR-APUF仿真49.6349.1298.3798.0698.1098.01
    FPGA58-Slice49.7249.6897.2295.8995.4895.11
    4XOR-APUF仿真50.2249.3695.1852.4173.2152.43
    FPGA77-Slice49.9450.3393.3852.0172.0552.07
    5XOR-APUF仿真49.2849.5293.6151.7655.4651.79
    FPGA96-Slice50.0750.5992.5451.0454.7851.32
    SC-APUF仿真50.1950.6998.7359.3459.0659.27
    FPGA28-Slice50.4450.3898.6857.1856.3358.47
    下载: 导出CSV
  • [1] 汪鹏君, 李乐薇, 郑雁公, 等. 基于气敏传感器的高稳态物理不可克隆函数发生器[J]. 电子与信息学报, 2021, 43(6): 1596–1602. doi: 10.11999/JEIT201104

    WANG Pengjun, LI Lewei, ZHENG Yangong, et al. High steady-state physical unclonable function generator based on gas sensors[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1596–1602. doi: 10.11999/JEIT201104
    [2] ZHANG Jiliang and QU Gang. Physical unclonable function-based key sharing via machine learning for IoT security[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 7025–7033. doi: 10.1109/TIE.2019.2938462
    [3] AMAN M N, TANEJA S, SIKDAR B, et al. Token-based security for the internet of things with dynamic energy-quality tradeoff[J]. IEEE Internet of Things Journal, 2019, 6(2): 2843–2859. doi: 10.1109/JIOT.2018.2875472
    [4] CHATTERJEE B, DAS D, MAITY S, et al. RF-PUF: Enhancing IoT security through authentication of wireless nodes using in-situ machine learning[J]. IEEE Internet of Things Journal, 2019, 6(1): 388–398. doi: 10.1109/JIOT.2018.2849324
    [5] PAPPU R, RECHT B, TAYLOR J, et al. Physical one-way functions[J]. Science, 2002, 297(5589): 2026–2030. doi: 10.1126/science.1074376
    [6] LI Gang, WANG Pengjun, MA Xuejiao, et al. A 215-F2 bistable physically unclonable function with an ACF of < 0.005 and a native bit instability of 2.05% in 65-nm CMOS process[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(11): 2290–2299. doi: 10.1109/TVLSI.2020.3014892
    [7] CUI Yijun, WANG Chenghua, LIU Weiqiang, et al. Lightweight configurable ring oscillator PUF based on RRAM/CMOS hybrid circuits[J]. IEEE Open Journal of Nanotechnology, 2020, 1: 128–134. doi: 10.1109/OJNANO.2020.3040787
    [8] LIU Weiqiang, ZHANG Lei, ZHANG Zhengran, et al. XOR-based low-cost reconfigurable PUFs for IoT security[J]. ACM Transactions on Embedded Computing Systems, 2019, 18(3): 25. doi: 10.1145/3274666
    [9] 徐金甫, 吴缙, 李军伟, 等. 基于敏感度混淆机制的控制型物理不可克隆函数研究[J]. 电子与信息学报, 2019, 41(7): 1601–1609. doi: 10.11999/JEIT180775

    XU Jinfu, WU Jin, LI Junwei, et al. Controlled physical unclonable function research based on sensitivity confusion mechanism[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1601–1609. doi: 10.11999/JEIT180775
    [10] ZHANG Jiliang and SHEN Chaoqun. Set-based obfuscation for strong PUFs against machine learning attacks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(1): 288–300. doi: 10.1109/TCSI.2020.3028508
    [11] AVVARU S V S, ZENG Ziqing, and PARHI K K. Homogeneous and heterogeneous feed-forward XOR physical unclonable functions[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2485–2498. doi: 10.1109/TIFS.2020.2968113
    [12] GAO Yansong, MA Hua, AL-SARAWI S F, et al. PUF-FSM: A controlled strong PUF[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(5): 1104–1108. doi: 10.1109/TCAD.2017.2740297
    [13] 刘伟强, 崔益军, 王成华. 一种低成本物理不可克隆函数结构的设计实现及其RFID应用[J]. 电子学报, 2016, 44(7): 1772–1776. doi: 10.3969/j.issn.0372-2112.2016.07.036

    LIU Weiqiang, CUI Yijun, and WANG Chenghua. Design and implementation of a low-cost physical unclonable function and its application in RFID[J]. Acta Electronica Sinica, 2016, 44(7): 1772–1776. doi: 10.3969/j.issn.0372-2112.2016.07.036
    [14] SANTIKELLUR P and CHAKRABORTY R S. A computationally efficient tensor regression network-based modeling attack on XOR arbiter PUF and its variants[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(6): 1197–1206. doi: 10.1109/TCAD.2020.3032624
    [15] VIJAYAKUMAR A and KUNDU S. A novel modeling attack resistant PUF design based on non-linear voltage transfer characteristics[C]. Proceedings of 2015 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2015: 653–658. doi: 10.7873/DATE.2015.0522.
    [16] AVVARU S V S and PARHI K K. Effect of loop positions on reliability and attack resistance of feed-forward PUFs[C]. Proceedings of 2019 IEEE Computer Society Annual Symposium on VLSI, Miami, USA, 2019: 366–371. doi: 10.1109/ISVLSI.2019.00073.
    [17] XU Yunhao, LAO Yingjie, LIU Weiqiang, et al. Mathematical modeling analysis of strong physical unclonable functions[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 4426–4438. doi: 10.1109/TCAD.2020.2969645
    [18] 李俊志, 关杰. 非线性反馈移存器型序列密码的完全性通用算法[J]. 电子学报, 2018, 46(9): 2075–2080. doi: 10.3969/j.issn.0372-2112.2018.09.005

    LI Junzhi and GUAN Jie. Universal algorithm of full diffusion of stream cipher based on nonlinear feedback shift register[J]. Acta Electronica Sinica, 2018, 46(9): 2075–2080. doi: 10.3969/j.issn.0372-2112.2018.09.005
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1655
  • HTML全文浏览量:  636
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-08-20
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回