高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于开放运算语言加速的数字全息卷积重建算法实现

罗洪艳 周珞一 赵震 郭洪 冯晓波

罗洪艳, 周珞一, 赵震, 郭洪, 冯晓波. 基于开放运算语言加速的数字全息卷积重建算法实现[J]. 电子与信息学报, 2022, 44(9): 3258-3265. doi: 10.11999/JEIT210693
引用本文: 罗洪艳, 周珞一, 赵震, 郭洪, 冯晓波. 基于开放运算语言加速的数字全息卷积重建算法实现[J]. 电子与信息学报, 2022, 44(9): 3258-3265. doi: 10.11999/JEIT210693
LUO Hongyan, ZHOU Luoyi, ZHAO Zhen, GUO Hong, FENG Xiaobo. Implementation of Digital Holographic Convolutional Reconstruction Algorithm Based on Open Computing Language Acceleration[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3258-3265. doi: 10.11999/JEIT210693
Citation: LUO Hongyan, ZHOU Luoyi, ZHAO Zhen, GUO Hong, FENG Xiaobo. Implementation of Digital Holographic Convolutional Reconstruction Algorithm Based on Open Computing Language Acceleration[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3258-3265. doi: 10.11999/JEIT210693

基于开放运算语言加速的数字全息卷积重建算法实现

doi: 10.11999/JEIT210693
基金项目: 国家自然科学基金(Z20190224),重庆市研究生科研创新项目(CYS19056)
详细信息
    作者简介:

    罗洪艳:女,副教授,研究方向为医学图像处理

    周珞一:女,硕士生,研究方向为医学信号处理及应用

    赵震:男,硕士,研究方向为医学图像处理

    郭洪:女,硕士生,研究方向为生物医学信息处理

    冯晓波:男,硕士生,研究方向为生物医学传感器

    通讯作者:

    罗洪艳 h.y.luo@cqu.edu.cn

  • 中图分类号: O438.1

Implementation of Digital Holographic Convolutional Reconstruction Algorithm Based on Open Computing Language Acceleration

Funds: The National Natural Science Foundation of China (Z20190224), The Graduate Research and Innovation Foundation of Chongqing, China (CYS19056)
  • 摘要: 针对数字全息重建算法计算速度慢、实时应用能力弱以及现有GPU加速策略跨平台移植性差等问题,该文提出一种利用开放运算语言(OpenCL)架构提高数字全息重建算法执行效率的方案。该方案充分利用OpenCL架构的异构协同计算能力,对数字全息卷积重建算法进行CPU+GPU的异构运行设计,并采用数据并行模式编程实现。针对不同分辨率数字全息图、不同GPU加速平台的测试结果表明,该加速策略的平均执行时间均比CPU低1个数量级,最高总加速比达到54.2,并行运算加速比甚至高达94.7,且具有规模增长性及良好的跨平台特性,加速效率显著,更加适用于数字全息技术的工程化实现及实时性应用场合。
  • 图  1  基于CPU+GPU架构的卷积加速重建算法流程图

    图  2  卷积加速重建算法的GPU实现示意图

    图  3  20 μm聚苯乙烯微粒的同轴数字全息图

    图  4  全幅重建结果与局部区域的显微镜对比图

    图  5  不同加速平台的加速比(OpenCL版本)

    图  6  不同加速平台的内部耗时百分比(OpenCL版本)

    表  1  两种GPU加速平台参数

    平台型号频率内存流处理单元
    加速平台1CPU1:AMD Ryzen 5 36004.1 GHz16 GB
    GPU1:NVIDIA GeForce GTX 1660 SUPER1530 MHz6 GB1408
    加速平台2CPU2:AMD Ryzen 7 Mobile1.8 GHz16 GB
    GPU2:AMD Radeon(TM) Graphics1750 MHz512 MB512
    下载: 导出CSV

    表  2  不同CPU与GPU加速平台的全息重建总执行时间对比

    序号分辨率(像素)总执行时间(ms)
    CPU1加速平台1
    (OpenCL)
    加速平台1
    (CUDA)
    CPU 2加速平台2
    a512×384239121042171.3
    b1024×7688282416.71475138
    c1536×1152182239303045273.6
    d2048×1536320866.3505495445.9
    e2560×1920498998.4708758739
    f3072×23047171132.397113341147.4
    下载: 导出CSV

    表  3  不同GPU加速平台下全息重建的分项执行时间对比(OpenCL版本)(ms)

    序号分辨率(像素)串行运算用时数据传输用时并行运算用时
    CPU1CPU2CPU1-GPU1CPU2-GPU2GPU1GPU2
    a512×3841.33.30.721066
    b1024×768515.30.73.718.3119
    c1536×115212.333.321124.7229.3
    d2048×153620.356.3514.341375.3
    e2560×192032.7785.719.760641.3
    f3072×230447.3103.79.33375.71010.7
    下载: 导出CSV
  • [1] 刘俊, 梁霄, 王淦诚, 等. 微纳气泡的三维动态表征[J]. 净水技术, 2021, 40(2): 67–74,126. doi: 10.15890/j.cnki.jsjs.2021.02.007

    LIU Jun, LIANG Xiao, WANG Gancheng, et al. Three-dimensional dynamic characterization of microbubbles[J]. Water Purification Technology, 2021, 40(2): 67–74,126. doi: 10.15890/j.cnki.jsjs.2021.02.007
    [2] WU Peng, ZHANG Dejie, YUAN Jing, et al. Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography[J]. Optics Express, 2022, 30(4): 5177–5191. doi: 10.1364/OE.451409
    [3] 税云秀, 胡琳, 戴姚辉, 等. 基于数字全息的回转类机械零件三维显示[J]. 激光与光电子学进展, 2020, 57(6): 060901.

    SHUI Yunxiu, HU Lin, DAI Yaohui, et al. Three-dimensional display of rotary mechanical parts based on digital holography[J]. Laser &Optoelectronics Progress, 2020, 57(6): 060901.
    [4] CHEN Duofang, WANG Lin, LUO Xixin, et al. Resolution and contrast enhancement for Lensless digital holographic microscopy and its application in biomedicine[J]. Photonics, 2022, 9(5): 358. doi: 10.3390/photonics9050358
    [5] GAO Pan, WANG Jun, GAO Yangzi, et al. Observation on the droplet ranging from 2 to 16 μm in cloud droplet size distribution based on digital holography[J]. Remote Sensing, 2022, 14(10): 2414. doi: 10.3390/rs14102414
    [6] CHANG Xuyang, BIAN liheng, GAO Yunhui, et al. Plug-and-play pixel super-resolution phase retrieval for digital holography[J]. Optics Letters, 2022, 47(11): 2658–2661. doi: 10.1364/OL.458117
    [7] 马静, 邸江磊, 肖锋. OpenMP并行程序在数字全息三维重构中的应用[J]. 计算机技术与发展, 2018, 28(3): 150–153,159. doi: 10.3969/j.issn.1673-629X.2018.03.032

    MA Jing, DI Jianglei, and XIAO Feng. Application of OpenMP parallel program in 3D reconstruction of digital holography[J]. Computer Technology and Development, 2018, 28(3): 150–153,159. doi: 10.3969/j.issn.1673-629X.2018.03.032
    [8] CHEN Huanyuan, HWANG W J, CHENG C J, et al. An FPGA-based autofocusing hardware architecture for digital holography[J]. IEEE Transactions on Computational Imaging, 2019, 5(2): 287–300. doi: 10.1109/TCI.2019.2892810
    [9] 刘海, 赵志雄, 税云秀, 等. CUDA架构下的数字全息粒子三维速度矢量场快速重建[J]. 激光杂志, 2017, 38(4): 57–60. doi: 10.14016/j.cnki.jgzz.2017.04.057

    LIU Hai, ZHAO Zhixiong, SHUI Yunxiu, et al. High-speed digital holographic reconstruction of 3D particles velocity vector filed with CUDA[J]. Laser Journal, 2017, 38(4): 57–60. doi: 10.14016/j.cnki.jgzz.2017.04.057
    [10] SHIN J G, KIM J W, LEE J H, et al. Accurate reconstruction of digital holography using frequency domain zero padding[J]. SPIE, 2017, 10323, 103235H.
    [11] DOĞAR M, İLHAN H A, and ÖZCAN M. Real-time reconstruction of digital holograms with GPU[C]. SPIE 8644, Practical Holography XXVII: Materials & Applications, San Francisco, USA, 2013: 86440B.
    [12] 王广俊, 王大勇, 王华英. 数字全息显微中常见重建算法比较[J]. 激光与光电子学进展, 2010, 47(3): 030901.

    WANG Guangjun, WANG Dayong, and WANG Huaying. Comparison of commonly used numerical reconstruction algorithms in digital holographic microscopy[J]. 2010, 47(3): 030901.
    [13] 何希, 吴炎桃, 邸臻炜, 等. 基于图形处理器的形态学重建系统[J]. 计算机应用, 2019, 39(7): 2008–2013. doi: 10.11772/j.issn.1001-9081.2018122549

    HE Xi, WU Yantao, DI Zhenwei, et al. GPU-based morphological reconstruction system[J]. Journal of Computer Applications, 2019, 39(7): 2008–2013. doi: 10.11772/j.issn.1001-9081.2018122549
    [14] 于梦华, 王双亭, 李英成, 等. 畸变差改正算法OpenCL并行加速研究[J]. 遥感信息, 2019, 34(3): 88–92. doi: 10.3969/j.issn.1000-3177.2019.03.014

    YU Menghua, WANG Shuangting, LI Yingcheng, et al. Distortion algorithm OpenCL parallel acceleration[J]. Remote Sensing Information, 2019, 34(3): 88–92. doi: 10.3969/j.issn.1000-3177.2019.03.014
    [15] KARIMI K, DICKSON N G, and HAMZE F. A performance comparison of CUDA and OpenCL[J]. arXiv: 1005.2581, 2010.
    [16] YU Leiming, NINA-PARAVECINO F, KAELI D R, et al. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms[J]. Journal of Biomedical Optics, 2018, 23(1): 010504. doi: 10.1117/1.JBO.23.1.010504
    [17] FANG Jianbin, VARBANESCU A L, and SIPS H. A comprehensive performance comparison of CUDA and OpenCL[C]. 2011 International Conference on Parallel Processing, Taipei, China, 2011: 216–225.
    [18] HOLM H H, BRODTKORB A R, and SAETRA M L. Performance and energy efficiency of CUDA and OpenCL for GPU computing using python[M]. FOSTER I, JOUBERT G R, KUCERA L, et al. Parallel Computing: Technology Trends. Amsterdam: IOS Press, 2020, 36: 593–604.
    [19] DU Peng, WEBER R, LUSZCZEK P, et al. From CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming[J]. Parallel Computing, 2012, 38(8): 391–407. doi: 10.1016/j.parco.2011.10.002
    [20] LOBATO GIMENES T, PISANI F, and BORIN E. Evaluating the performance and cost of accelerating seismic processing with CUDA, OpenCL, OpenACC, and OpenMP[C]. 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, Canada, 2018: 399–408.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  242
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2022-07-04
  • 网络出版日期:  2022-07-05
  • 刊出日期:  2022-09-19

目录

    /

    返回文章
    返回