高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于鲁棒主成分分析的多域联合杂波抑制算法

李相平 王明泽 但波 李蔚 马俊伟

李相平, 王明泽, 但波, 李蔚, 马俊伟. 基于鲁棒主成分分析的多域联合杂波抑制算法[J]. 电子与信息学报, 2022, 44(4): 1303-1310. doi: 10.11999/JEIT210676
引用本文: 李相平, 王明泽, 但波, 李蔚, 马俊伟. 基于鲁棒主成分分析的多域联合杂波抑制算法[J]. 电子与信息学报, 2022, 44(4): 1303-1310. doi: 10.11999/JEIT210676
LI Xiangping, WANG Mingze, DAN Bo, LI Wei, MA Junwei. The Multi-domain Union Clutter Suppression Algorithm Based on Robust Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1303-1310. doi: 10.11999/JEIT210676
Citation: LI Xiangping, WANG Mingze, DAN Bo, LI Wei, MA Junwei. The Multi-domain Union Clutter Suppression Algorithm Based on Robust Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1303-1310. doi: 10.11999/JEIT210676

基于鲁棒主成分分析的多域联合杂波抑制算法

doi: 10.11999/JEIT210676
基金项目: 山东省自然科学基金(ZR2020MF090)
详细信息
    作者简介:

    李相平:男,1963年生,教授,研究方向为精确制导技术与信息通信

    王明泽:男,1997年生,硕士生,研究方向为穿墙雷达成像处理技术

    但波:男,1985年生,讲师,研究方向为精确制导技术与机器学习

    李蔚:女,1990年生,讲师,研究方向为电子对抗技术

    马俊伟:男,1989年生,助理工程师,研究方向为控制科学与工程

    通讯作者:

    王明泽 m18766634763_1@163.com

  • 中图分类号: TN957.52

The Multi-domain Union Clutter Suppression Algorithm Based on Robust Principal Component Analysis

Funds: The Natural Science Foundation of Shandong Province (ZR2020MF090)
  • 摘要: 奇异值分解等传统算法在处理穿墙成像中的杂波抑制问题时,杂波消除不够彻底,目标成像质量不高,严重影响后续的目标检测与识别。为解决这一问题,该文基于鲁棒主成分分析理论,在回波域和图像域分别建立联合低秩稀疏模型,以光滑化快速交替线性化(SFAL)方法来求解模型,并对目标图像进行指数加权联乘多域图像融合处理,从而得到最终成像结果。仿真结果表明,该算法速度快、精度高,可有效改善目标成像质量,并能较好地满足穿墙成像的实时性和准确性要求。
  • 图  1  杂波抑制算法流程图

    图  2  穿墙场景示意图

    图  3  原始回波成像

    图  4  回波域目标图像

    图  5  图像域目标图像

    图  6  超均值像素数变化曲线

    图  7  多域联合成像

    图  8  背景对消成像

    图  9  SVD算法成像

    表  1  SFAL方法

     输入:2维图像矩阵$ {\mathbf{I}} \in {{\mathbf{R}}^{P \times Q}} $,凸函数$f({\mathbf{x}}) = {\left\| {\mathbf{x}} \right\|_ * }$,凸函数$ g({\mathbf{x}}) = \gamma {\left\| {{\mathbf{I}} - {\mathbf{x}}} \right\|_1} $,正则化参数$ \gamma = 1/\sqrt {\max (P,Q)} $;
     输出:杂波分量矩阵${ {\mathbf{I} }_{\text{w} } } = { {\mathbf{x} }^{k{{ - } }1} }$,目标分量矩阵${ {\mathbf{I} }_{ {\text{tg} } } } = {\mathbf{I} } - { {\mathbf{x} }^{k{{ - } }1} }$。
     (1) 初始化参数:$\alpha = \beta = {10^{ - 6}}$,$ {{\mathbf{x}}^0} = {{\mathbf{y}}^0} = {{\mathbf{z}}^1} = 0 $, $ {\mu _f} = {\mu _g} = 1 $, ${\eta _1} = 1$;$k = 1$。
     (2) 根据式(12)和式(14)进行光滑化处理。
     (3) 迭代解未收敛时执行步骤(4)到(7)
     (4) 根据式(18)和式(19)进行交替迭代;
     (5) 根据式(20)更新$\eta $;
     (6) 根据式(21)更新${\mathbf{z}}$;
     (7) $k \leftarrow k + 1$
     (8) 结束循环
    下载: 导出CSV

    表  2  各方法性能对比

    算法类型SFALAPGEALMIALM
    目标杂波比(dB)12.1511.2211.9511.27
    迭代次数(次)81631339
    迭代时间(s)0.13271.46038.39250.5512
    下载: 导出CSV

    表  3  各情况下的目标杂波比(dB)

    原始回波
    成像
    多域联合
    成像
    背景对消
    成像
    SVD算法
    成像
    目标杂波比3.8925.2116.2713.17
    较原始成像改善021.3212.389.28
    下载: 导出CSV
  • [1] 刘新, 阎焜, 杨光耀, 等. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究[J]. 电子与信息学报, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356

    XIN Liu, YAN Kun, YANG Guangyao, et al. Study on 3D imaging and motion compensation algorithm for UWB-MIMO through-wall radar[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356
    [2] SHAO Wenyi and MCCOLLOUGH T. Advances in microwave near-field imaging: Prototypes, systems, and applications[J]. IEEE Microwave Magazine, 2020, 21(5): 94–119. doi: 10.1109/MMM.2020.2971375
    [3] ZHOU Yi, HUANG Chen, LIU Hongqing, et al. Front-wall clutter removal in through-the-wall radar based on weighted nuclear norm minimization[J]. IEEE Geoscience and Remote Sensing Letters, To be published. doi: 10.1109/lgrs.2020.3034568.
    [4] DOĞU S, AKINCI M N, ÇAYÖREN M, et al. Truncated singular value decomposition for through-the-wall microwave imaging application[J]. IET Microwaves, Antennas & Propagation, 2020, 14(4): 260–267. doi: 10.1049/iet-map.2019.0677
    [5] YE Guodong, PAN Chen, DONG Youxia, et al. Image encryption and hiding algorithm based on compressive sensing and random numbers insertion[J]. Signal Processing, 2020, 172: 107563. doi: 10.1016/j.sigpro.2020.107563
    [6] LEIGSNERING M, DEBES C, and ZOUBIR A M. Compressive sensing in through-the-wall radar imaging[C]. Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011: 4008–4011. doi: 10.1109/ICASSP.2011.5947231.
    [7] VAN HA T, BOUTERDOUM A, and PHUNG S L. A matrix completion approach for wall-clutter mitigation in compressive radar imaging of indoor targets[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 1608–1612. doi: 10.1109/ICASSP.2018.8462000.
    [8] TANG V H, BOUZERDOUM A, and PHUNG S L. Compressive radar imaging of stationary indoor targets with low-rank plus jointly sparse and total variation regularizations[J]. IEEE Transactions on Image Processing, 2020, 29: 4598–4613. doi: 10.1109/tip.2020.2973819
    [9] CANDÈS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 1–37. doi: 10.1145/1970392.1970395
    [10] TIVIVE F H C and BOUZERDOUM A. An improved SVD-based wall clutter mitigation method for through-the-wall radar imaging[C]. The 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Darmstadt, Germany, 2013: 430–434. doi: 10.1109/spawc.2013.6612086.
    [11] CANDES E J and TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425. doi: 10.1109/tit.2006.885507
    [12] WEN Zaiwen, YIN Wotao, and ZHANG Yin. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm[J]. Mathematical Programming Computation, 2012, 4(4): 333–361. doi: 10.1007/s12532-012-0044-1
    [13] CHANDRASEKARAN V, SANGHAVI S, PARRILO P A, et al. Rank-sparsity incoherence for matrix decomposition[J]. SIAM Journal on Optimization, 2011, 21(2): 572–596. doi: 10.1137/090761793
    [14] LIN Zhouchen, GANESH A, WRIGHT J, et al. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix[R]. Coordinated Science Laboratory Report no. UILU-ENG-09-2214, DC-246, 2009: 1–18.
    [15] LIN Zhouchen, CHEN Minming, and MA Yi. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv preprint arXiv: 1009.5055, 2013.
    [16] 孙鑫. 超宽带穿墙雷达成像方法与技术研究[D]. [博士论文]. 国防科学技术大学, 2015.

    SUN Xin. Research on method and technique of ultra-wideband through-the-wall radar imaging[D]. [Ph. D. dissertation], National University of Defense Technology, 2015.
    [17] TANG V H, BOUZERDOUM A, and PHUNG S L. Multipolarization through-wall radar imaging using low-rank and jointly-sparse representations[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1763–1776. doi: 10.1109/tip.2017.2786462
    [18] TIVIVE F H C and BOUZERDOUM A. Joint low-rank and sparse based image reconstruction for through-the-wall radar imaging[C]. The 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, Holland, 2017: 1–5. doi: 10.1109/camsap.2017.8313110.
    [19] TANG V H, BOUZERDOUM A, PHUNG S L, et al. Radar imaging of stationary indoor targets using joint low-rank and sparsity constraints[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 1412–1416. doi: 10.1109/icassp.2016.7471909.
    [20] 韩银萍, 刘丽, 王冰洁, 等. 基于鲁棒主成分分析的混沌穿墙成像雷达杂波抑制方法[J]. 电子器件, 2020, 43(1): 142–146. doi: 10.3969/j.issn.1005-9490.2020.01.029

    HAN Yinping, LIU Li, WANG Bingjie, et al. Clutter removal using robust principal component analysis for chaos through-wall imaging radar[J]. Chinese Journal of Electron Devices, 2020, 43(1): 142–146. doi: 10.3969/j.issn.1005-9490.2020.01.029
    [21] GOLDFARB D, MA Shiqian, and SCHEINBERG K. Fast alternating linearization methods for minimizing the sum of two convex functions[J]. Mathematical Programming, 2013, 141(1/2): 349–382. doi: 10.1007/s10107-012-0530-2
    [22] NESTEROV Y. Smooth minimization of non-smooth functions[J]. Mathematical Programming, 2005, 103(1): 127–152. doi: 10.1007/s10107-004-0552-5
    [23] TRAN-DINH Q. Adaptive smoothing algorithms for nonsmooth composite convex minimization[J]. Computational Optimization and Applications, 2017, 66(3): 425–451. doi: 10.1007/s10589-016-9873-6
    [24] TRAN-DINH Q and CEVHER V. A primal-dual algorithmic framework for constrained convex minimization[J]. arXiv preprint arXiv: 1406.5403, 2015.
    [25] NESTEROV Y. Introductory Lectures on Convex Optimization: A Basic Course[M]. New York: Kluwer Academic, 2003: 45–125.
    [26] JIA Yong, CUI Guolong, KONG Lingjiang, et al. Multichannel and multiview imaging approach to building layout determination of through-wall radar[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 970–974. doi: 10.1109/lgrs.2013.2283778
    [27] MCINTOSH B, VENKATARAMANAN S, and MAHALANOBIS A. Infrared target detection in cluttered environments by maximization of a target to clutter ratio (TCR) metric using a convolutional neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 57(1): 485–496. doi: 10.1109/TAES.2020.3024391
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  462
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-10-28
  • 网络出版日期:  2021-11-05
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回