高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁故障注入攻击对动态随机存取存储器安全性的影响研究

刘强 唐鸿辉

刘强, 唐鸿辉. 电磁故障注入攻击对动态随机存取存储器安全性的影响研究[J]. 电子与信息学报, 2021, 43(9): 2449-2457. doi: 10.11999/JEIT210566
引用本文: 刘强, 唐鸿辉. 电磁故障注入攻击对动态随机存取存储器安全性的影响研究[J]. 电子与信息学报, 2021, 43(9): 2449-2457. doi: 10.11999/JEIT210566
Qiang LIU, Honghui TANG. Study on Effect of ElectroMagnetic Fault Injection Attack on Dynamic Random Access Memory[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2449-2457. doi: 10.11999/JEIT210566
Citation: Qiang LIU, Honghui TANG. Study on Effect of ElectroMagnetic Fault Injection Attack on Dynamic Random Access Memory[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2449-2457. doi: 10.11999/JEIT210566

电磁故障注入攻击对动态随机存取存储器安全性的影响研究

doi: 10.11999/JEIT210566
基金项目: 国家自然科学基金(61974102)
详细信息
    作者简介:

    刘强:男,1978年生,教授,研究方向为硬件安全和数字集成电路设计

    唐鸿辉:男,1996年生,硕士生,研究方向为硬件安全

    通讯作者:

    刘强 qiangliu@tju.edu.cn

  • 中图分类号: TN918; TP309.1

Study on Effect of ElectroMagnetic Fault Injection Attack on Dynamic Random Access Memory

Funds: The National Natural Science Foundation of China (61974102)
  • 摘要: 以探索电磁故障注入(EMFI)攻击对动态随机存取存储器(DRAM)的安全性影响为目标,该文使用电磁故障注入攻击平台对DRAM进行了扫描攻击,对出现的故障进行统计分类,随后基于DRAM的基本结构分析阐述了造成故障的机理, 最后展示了通过电磁脉冲攻击DRAM对计算机系统的安全威胁。实验表明电磁脉冲在DRAM中既可以引起瞬时故障也可以引起持续性故障,且以多故障为主。分析发现,电磁脉冲故障攻击技术可以以低的时间和空间分辨率向DRAM的指定地址注入持续性故障。另外,该文成功地将持续性故障注入到了存储在DRAM中的AES-128程序中并破解了其密钥,证明了使用电磁脉冲对DRAM进行攻击能对计算机系统造成安全威胁,展示了DRAM安全性的研究对硬件系统安全具有重要意义。
  • 图  1  1T-1C基本结构

    图  2  读“1”操作时序示意图

    图  3  攻击平台示意图

    图  4  观察实验框图

    图  5  观察实验攻击对象实物图

    图  6  验证实验攻击对象实物图

    图  7  观察实验攻击结果

    图  8  地址偏移故障规律示意图

    图  9  区域性故障的故障地址分布图

    图  10  攻击位置(6,6)产生的故障地址的行列分布图

    图  11  验证实验攻击结果

    图  12  电源网络感应模型及感应电动势示意图

    图  13  密文第5个字节中各个值出现的次数

    图  14  AES最后一轮运算结构图

    表  1  列出的4个字节中消失的值

    12345
    第1 Byte0x400x5d0xef0xf70xf8
    第2 Byte0x220x2d0x3a0x880x95
    第15 Byte0x020x0d0x150xa70xba
    第16 Byte0x4f0x520xe50xea0xfd
    下载: 导出CSV

    表  2  电磁故障注入攻击相关研究对比

    目标故障特性利用故障分析机理
    文献[9]微处理器
    文献[16,17]微处理器
    文献[18]传输线
    文献[10]DRAM
    本文DRAM
    下载: 导出CSV
  • [1] MUTLU O. Memory scaling: A systems architecture perspective[C]. 2013 5th IEEE International Memory Workshop, Monterey, USA, 2013: 21–25.
    [2] DENNARD R H. Technical literature [Reprint of "field-effect transistor memory" (US Patent No. 3, 387, 286)][J]. IEEE Solid-State Circuits Society Newsletter, 2008, 13(1): 17–25. doi: 10.1109/N-SSC.2008.4785686
    [3] WALKER A J, LEE S, and BEERY D. On DRAM rowhammer and the physics of insecurity[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1400–1410. doi: 10.1109/TED.2021.3060362
    [4] GUO Xiaolong, ZHU Huifeng, JIN Yier, et al. When capacitors attack: Formal method driven design and detection of charge-domain trojans[C]. 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 2019: 1727–1732.
    [5] 姜会龙, 朱翔, 李悦, 等. 基于微控制器的AES激光注入攻击研究[J]. 电子与信息学报, 2021, 43(5): 1357–1364. doi: 10.11999/JEIT200163

    JIANG Huilong, ZHU Xiang, LI Yue, et al. Research on laser injection attack for AES based on micro-controller unit[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1357–1364. doi: 10.11999/JEIT200163
    [6] DEHBAOUI A, DUTERTRE J M, ROBISSON B, et al. Electromagnetic transient faults injection on a hardware and a software implementations of AES[C]. 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium, 2012: 7–15.
    [7] ELMOHR M A, LIAO Haohao, and GEBOTYS C H. EM fault injection on ARM and RISC-V[C]. 2020 21st International Symposium on Quality Electronic Design (ISQED), Santa Clara, USA, 2020: 206–212.
    [8] MENU A, DUTERTRE J M, POTIN O, et al. Experimental analysis of the electromagnetic instruction skip fault model[C]. 2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Marrakech, Morocco, 2020: 1–7.
    [9] MORO N, DEHBAOUI A, HEYDEMANN K, et al. Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller[C]. 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos, USA, 2013: 77–88.
    [10] CUI Ang and HOUSLEY R. BADFET: Defeating modern secure boot using second-order pulsed electromagnetic fault injection[C]. 11th USENIX Workshop on Offensive Technologies (WOOT 17), Vancouver, Canada, 2017.
    [11] BAYON P, BOSSUET L, AUBERT A, et al. Contactless electromagnetic active attack on ring oscillator based true random number generator[C]. The Third International Workshop, COSADE 2012, Darmstadt, Germany, 2012: 151–166.
    [12] ORDAS S, GUILLAUME-SAGE L, and MAURINE P. EM injection: Fault model and locality[C]. 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Saint-Malo, France, 2015: 3–13.
    [13] ZHANG Fan, ZHANG Yiran, JIANG Huilong, et al. Persistent fault attack in practice[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(2): 172–195. doi: 10.13154/tches.v2020.i2.172-195
    [14] LOHRKE H, TAJIK S, KRACHENFELS T, et al. Key extraction using thermal laser stimulation: A case study on Xilinx Ultrascale FPGAs[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018(3): 573–595.
    [15] COLOMBIER B, MENU A, DUTERTRE J M, et al. Laser-induced single-bit faults in flash memory: Instructions corruption on a 32-bit microcontroller[C]. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, USA, 2019: 1–10.
    [16] LIAO Haohao and GEBOTYS C. Methodology for EM fault injection: Charge-based fault model[C]. 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 2019: 256–259.
    [17] DUMONT M, LISART M, and MAURINE P. Modeling and simulating electromagnetic fault injection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(4): 680–693. doi: 10.1109/TCAD.2020.3003287
    [18] MENU A, BHASIN S, DUTERTRE J M, et al. Precise spatio-temporal electromagnetic fault injections on data transfers[C]. 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Atlanta, USA, 2019: 1–8.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  966
  • HTML全文浏览量:  601
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-08-15
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回