高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部散射中心的近、远场微动回波时频分布特性的解析表达

占伟杰 万显荣 易建新

占伟杰, 万显荣, 易建新. 基于局部散射中心的近、远场微动回波时频分布特性的解析表达[J]. 电子与信息学报, 2022, 44(8): 2867-2877. doi: 10.11999/JEIT210565
引用本文: 占伟杰, 万显荣, 易建新. 基于局部散射中心的近、远场微动回波时频分布特性的解析表达[J]. 电子与信息学报, 2022, 44(8): 2867-2877. doi: 10.11999/JEIT210565
ZHAN Weijie, WAN Xianrong, YI Jianxin. Analytical Expression of the Time-Frequency Features of the Near-Field and Far-Field Micro-Motion Echo Based on Local Scattering Centers[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2867-2877. doi: 10.11999/JEIT210565
Citation: ZHAN Weijie, WAN Xianrong, YI Jianxin. Analytical Expression of the Time-Frequency Features of the Near-Field and Far-Field Micro-Motion Echo Based on Local Scattering Centers[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2867-2877. doi: 10.11999/JEIT210565

基于局部散射中心的近、远场微动回波时频分布特性的解析表达

doi: 10.11999/JEIT210565
基金项目: 国家自然科学基金(61931015, 62071335, 61831009),湖北省科技创新项目(2019AAA061),深圳市科技计划项目(JCYJ20170818112037398)
详细信息
    作者简介:

    占伟杰:男,1993年生,博士生,研究方向为外辐射源雷达信号处 理、实时信号并行处理和微多普勒效应

    万显荣:男,1975年生,教授,博士生导师,研究方向为新体制雷达设计,如外辐射源雷达、高频雷达系统及信号处理

    易建新:男,1989年生,博士,研究方向为外辐射源雷达信号处理、目标跟踪和信息融合

    通讯作者:

    万显荣 xrwan@whu.edu.cn

  • 中图分类号: TN958.97

Analytical Expression of the Time-Frequency Features of the Near-Field and Far-Field Micro-Motion Echo Based on Local Scattering Centers

Funds: The National Natural Science Foundation of China (61931015, 62071335, 61831009), The Technological Innovation Project of Hubei Province (2019AAA061), The Science and Technology Planning Project of Shenzhen (JCYJ20170818112037398)
  • 摘要: 微多普勒效应是由目标(或其部件)的转动、振动、进动等微动引起的频率调制现象,能够反映目标的几何结构和运动状态。该文全面分析了近、远场探测条件下目标扇叶转动引起的微动回波的时频分布特性。首先建立了近、远场雷达微动回波模型。然后从远场微动回波模型中推导其瞬时频率表达式,结果表明远场微动回波的时频图中包含由叶尖散射点、叶彀散射点和镜面反射点引入的正弦型flash、零频flash和矩形flash。最后,在近场条件下,直接推导得到上述3类局部散射点的瞬时频率表达式,表明近场微动回波时频图呈现类正弦型flash,零频flash和部分余弦型flash的组合。该文还从积分运算性质和电磁散射理论两方面解释了上述flash的形成机理,揭示了它们与扇叶数目、尺寸、转速等参数之间的关系。该文结果将有助于目标精细化建模、分类识别等应用。仿真和实测数据结果均证明了分析结果的正确性。
  • 图  1  近、远场探测场景示意图

    图  2  两个信号乘积、加和的时频分布结果

    图  3  函数$f(t) = 1/\cos (t)$的时域和频域图

    图  4  近场探测条件下,叶尖散射点情况

    图  5  近场探测条件下,镜面反射点情况

    图  6  远场条件下扇叶回波时频分布特性仿真结果

    图  7  近场条件下扇叶回波时频分布特性仿真结果

    图  8  远场条件下实测时频分布特性

    图  9  近场条件下实测风电机组回波的时频分布特性

    表  1  实验配置及目标参数

    直升机无人机
    ${f_0} = 658{\text{ MHz}}$${f_0} = 658{\text{ MHz}}$
    ${R_0} = 2500{\text{ m}}$${R_0} = 309{\text{ m}}$
    $L = 5{\text{ m}}$$L = 17.25{\text{ cm}}$
    $\omega = 406{\text{ r/min} }$$\omega = 5100{\text{ r/min} }$
    $K = 3$$ K=2\text{ }(4对) $
    $\beta = {40.02^ \circ }$$\beta = {56.95^ \circ }$
    $\delta = {13.82^ \circ }$$\delta = {1.40^ \circ }$
    下载: 导出CSV
  • [1] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    [2] 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049
    [3] 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
    [4] CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225–2240. doi: 10.1109/TGRS.2014.2358456
    [5] LI Gang, ZHANG Rui, RITCHIE M, et al. Sparsity-driven micro-Doppler feature extraction for dynamic hand gesture recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 655–665. doi: 10.1109/TAES.2017.2761229
    [6] ZHU Lingzhi, ZHANG Shuning, XU Shenan, et al. Classification of UAV-to-ground targets based on Micro-Doppler fractal features using IEEMD and GA-BP neural network[J]. IEEE Sensors Journal, 2020, 20(1): 348–358. doi: 10.1109/JSEN.2019.2942081
    [7] SUN Yingxiang, ABEYWICKRAMA S, JAYASINGHE L, et al. Micro-Doppler signature-based detection, classification, and localization of small UAV with long short-term memory neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6285–6300. doi: 10.1109/TGRS.2020.3028654
    [8] LI Xinyu, HE Yuan, FIORANELLI F, et al. Human motion recognition with limited radar micro-Doppler signatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6586–6599. doi: 10.1109/TGRS.2020.3028223
    [9] PANG Cunsuo, HAN Yan, HOU Huiling, et al. Micro-Doppler signal time-frequency algorithm based on STFRFT[J]. Sensors, 2016, 16(10): 1559. doi: 10.3390/s16101559
    [10] LI Wenchao, XIONG Boli, and KUANG Gangyao. Micro-Doppler parameter estimation based on improved time-frequency analysis[C]. Proceedings of the 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 2017: 1–4.
    [11] WHITELONIS N and LING Hao. Radar signature analysis using a joint time-frequency distribution based on compressed sensing[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 755–763. doi: 10.1109/TAP.2013.2291893
    [12] BIENKOWSKI P and TRZASKA H. Electromagnetic Measurements in the Near Field[M]. 2nd ed. Raleigh: SciTech Pub. , 2012.
    [13] CLEMENTE C and SORAGHAN J J. GNSS-based passive bistatic radar for micro-Doppler analysis of helicopter rotor blades[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 491–500. doi: 10.1109/TAES.2013.120018
    [14] GARRY J L and SMITH G E. Experimental observations of micro-Doppler signatures with passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 1045–1052. doi: 10.1109/TAES.2019.2895584
    [15] 马娇, 董勇伟, 李原, 等. 多旋翼无人机微多普勒特性分析与特征提取[J]. 中国科学院大学学报, 2019, 36(2): 235–243. doi: 10.7523/j.issn.2095-6134.2019.02.011

    MA Jiao, DONG Yongwei, LI Yuan, et al. Multi-rotor UAV’s micro-Doppler characteristic analysis and feature extraction[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(2): 235–243. doi: 10.7523/j.issn.2095-6134.2019.02.011
    [16] 何炜琨, 孙景波, 王晓亮, 等. 基于RSP-CFD方法的小型旋翼无人机微动特征提取[J]. 信号处理, 2021, 37(3): 399–408. doi: 10.16798/j.issn.1003-0530.2021.03.010

    HE Weikun, SUN Jingbo, WANG Xiaoliang, et al. Micro-motion feature extraction of micro-rotor UAV based on RSP-CFD method[J]. Journal of Signal Processing, 2021, 37(3): 399–408. doi: 10.16798/j.issn.1003-0530.2021.03.010
    [17] 陈小龙, 南钊, 张海, 等. 飞鸟与旋翼无人机雷达微多普勒测量实验研究[J]. 电波科学学报, 2021, 36(5): 704–714. doi: 10.12265/j.cjors.2020192

    CHEN Xiaolong, NAN Zhao, ZHANG Hai, et al. Experimental research on radar micro-Doppler of flying bird and rotor UAV[J]. Chinese Journal of Radio Science, 2021, 36(5): 704–714. doi: 10.12265/j.cjors.2020192
    [18] 陈永彬, 李少东, 杨军, 等. 旋翼叶片回波建模与闪烁现象机理分析[J]. 物理学报, 2016, 65(13): 138401. doi: 10.7498/aps.65.138401

    CHEN Yongbin, LI Shaodong, YANG Jun, et al. Rotor blades echo modeling and mechanism analysis of flashes phenomena[J]. Acta Physica Sinica, 2016, 65(13): 138401. doi: 10.7498/aps.65.138401
    [19] NIKOUBIN T, MUÑOZ-FERRERAS J, GÓMEZ-GARCÍA R, et al. Structural health monitoring of wind turbines using a low-cost portable k-band radar: An ab-initio field investigation[C]. Proceedings of 2015 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), San Diego, USA, 2015: 69–71,
    [20] ZHAO Heng, CHEN Geng, HONG Hong, et al. Remote structural health monitoring for industrial wind turbines using short-range Doppler radar[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 8002609. doi: 10.1109/TIM.2021.3053959
    [21] VAN LIL E, TRAPPENIERS D, DE BLESER J W, et al. Computations of radar returns of wind turbines[C]. Proceedings of the 3rd European Conference on Antennas and Propagation, Berlin, Germany, 2009: 3852–3856.
    [22] BEAUCHAMP R M and CHANDRASEKAR V. Suppressing wind turbine signatures in weather radar observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2546–2562. doi: 10.1109/TGRS.2016.2647604
    [23] NAQVI A, YANG Shangte, and LING Hao. Investigation of Doppler features from wind turbine scattering[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 485–488. doi: 10.1109/LAWP.2010.2050672
    [24] CRESPO-BALLESTEROS M, ANTONIOU M, and CHERNIAKOV M. Wind turbine blade radar signatures in the near field: Modeling and experimental confirmation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1916–1931. doi: 10.1109/TAES.2017.2675241
    [25] BOASHASH B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals[J]. Proceedings of the IEEE, 1992, 80(4): 520–538. doi: 10.1109/5.135376
    [26] BOASHASH B. Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications[J]. Proceedings of the IEEE, 1992, 80(4): 540–568. doi: 10.1109/5.135378
    [27] 张麟兮, 李南京, 胡楚锋, 等. 雷达目标散射特性测试与成像诊断[M]. 北京: 中国宇航出版社, 2009.
    [28] WAN Xianrong, YI Jianxin, ZHAO Zhixin, et al. Experimental research for CMMB-based passive radar under a multipath environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 70–85. doi: 10.1109/TAES.2013.120737
    [29] 万显荣, 邵启红, 夏鹏, 等. 数字地面多媒体广播外辐射源雷达微多普勒效应实验[J]. 系统工程与电子技术, 2016, 38(11): 2499–2504. doi: 10.3969/j.issn.1001-506X.2016.11.08

    WAN Xianrong, SHAO Qihong, XIA Peng, et al. Experimentation on micro-Doppler effect with passive radar based on digital terrestrial multimedia broadcasting[J]. Systems Engineering and Electronics, 2016, 38(11): 2499–2504. doi: 10.3969/j.issn.1001-506X.2016.11.08
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  181
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2022-03-17
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回