高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速移动通信系统中OTFS分数多普勒信道估计加窗研究

蒋占军 刘庆达 张鈜 刘欢

蒋占军, 刘庆达, 张鈜, 刘欢. 高速移动通信系统中OTFS分数多普勒信道估计加窗研究[J]. 电子与信息学报, 2022, 44(2): 646-653. doi: 10.11999/JEIT210561
引用本文: 蒋占军, 刘庆达, 张鈜, 刘欢. 高速移动通信系统中OTFS分数多普勒信道估计加窗研究[J]. 电子与信息学报, 2022, 44(2): 646-653. doi: 10.11999/JEIT210561
JIANG Zhanjun, LIU Qingda, ZHANG Hong, LIU Huan. Study on OTFS Fractional Doppler Channel Estimation and Windowing in High-Speed Mobile Communication Systems[J]. Journal of Electronics & Information Technology, 2022, 44(2): 646-653. doi: 10.11999/JEIT210561
Citation: JIANG Zhanjun, LIU Qingda, ZHANG Hong, LIU Huan. Study on OTFS Fractional Doppler Channel Estimation and Windowing in High-Speed Mobile Communication Systems[J]. Journal of Electronics & Information Technology, 2022, 44(2): 646-653. doi: 10.11999/JEIT210561

高速移动通信系统中OTFS分数多普勒信道估计加窗研究

doi: 10.11999/JEIT210561
基金项目: 甘肃省无线电监测定位创新团队基金(2017C-09),兰州交通大学“百名青年优秀人才培养计划”基金(150220232)
详细信息
    作者简介:

    蒋占军:男,1975年生,教授,研究方向为通信与信息系统

    刘庆达:男,1997年生,硕士生,研究方向为无线通信系统

    张鈜:男,1997年生,硕士生,研究方向为未来无线通信

    刘欢:女,1997年生,硕士生,研究方向为未来移动通信

    通讯作者:

    刘庆达 1570329341@qq.com

  • 中图分类号: TN92

Study on OTFS Fractional Doppler Channel Estimation and Windowing in High-Speed Mobile Communication Systems

Funds: The Foundation of Gansu Province Radio Monitoring and Positioning Innovation Team (2017C-09), The Funded by Lanzhou Jiaotong University “Hundred Young Talents Training Program” (150220232)
  • 摘要: 针对正交时频空间(OTFS)调制系统中分数多普勒信道对应的物理路径信道状态信息估计困难及计算复杂度较高等问题,该文提出一种节省导频资源的脉冲匹配滤波(PRS-PMF)信道估计算法。该算法首先使用数据与导频联合成帧的嵌入式辅助导频方法获得等效信道的估计,然后通过互相关匹配滤波估计出各路径信道状态信息,相比于传统的脉冲导频互相关匹配滤波信道估计算法,能够在降低计算复杂度的同时减少导频资源的占用。在此基础上,对OTFS系统加窗,减少窗口响应主瓣的整数样点数量并降低旁瓣电平,有效改善了等效信道多普勒响应函数的自相关特性,从而降低了其他符号及噪声对估计符号的干扰。
  • 图  1  OTFS系统框图

    图  2  分数/整数多普勒矩形窗口多普勒域信道扩展对比

    图  3  脉冲导频图案设计

    图  4  嵌入式导频辅助导频图案设计

    图  5  不同旁瓣电平的DC窗口对加窗匹配函数${\bar H_{{\text{EQ,}}\upsilon }}\left( {k - {k_{p,{\text{I}}}} - {k_{p,{\text{F}}}}} \right)$的影响

    图  6  不同旁瓣电平的DC窗口信道估计误差

    图  7  矩形窗及添加DC窗信道估计误差对比

    图  8  不同信道估计下采用MMSE检测块误码率

    图  9  不同信道估计下采用MMSE检测误码率

    表  1  导频图案资源占用率(%)比较

    系统嵌入式导频设计资源占用率$ {\eta _{{\text{PRS}}}} $文献[10]导频设计资源占用率$ \eta $
    ${l_{{\tau _{\max }}}} = 3,M = 16$25.0100
    ${l_{{\tau _{\max }}}} = 6,M = 32$21.9100
    ${l_{{\tau _{\max }}}} = 16,M = 64$26.6100
    下载: 导出CSV

    表  3  本文PRS-PMF信道估计算法步骤

    步骤操作描述
    1初始化降低导频资源的信道响应$ {{\mathbf{\hat H}}_{{\text{EQ}}}} $,调节系数$\alpha $和$\beta $,噪声方差${\sigma ^2}$,$p \Leftarrow 1$
    2遍历每个时延分量$\tilde l$并初始向量${\mathbf{h'}}$(1级循环)for每个时延分量$\tilde l$初始向量${\mathbf{h'}} \Leftarrow {{\mathbf{\hat H}}_{{\text{EQ}}}}\left[ {:,\tilde l} \right]$
    3对于第$p$路径生成
    互相关矩阵(2级循环)
    for对于每个多普勒频移离散量整数部分$ {\tilde k_{\text{I}}} $和小数部分$ {\tilde k_{\text{F}}} $计算$ {R_{{\mathbf{h'}},{H_{{\text{EQ,}}\upsilon }}\left( {{{\tilde k}_{\text{I}}} + {{\tilde k}_{\text{F}}}} \right)}} $,组成向量$ {{\mathbf{R}}_{{\mathbf{h'}},{{\mathbf{H}}_{{\text{EQ,}}\upsilon }}}} $
    4估算第$p$路径信道参数寻找$ \left| {{{\mathbf{R}}_{{\mathbf{h'}},{{\mathbf{H}}_{{\text{EQ,}}\upsilon }}}}} \right| $最大时的$ {\tilde k_{\text{I}}} + {\tilde k_{\text{F}}} $,如果$ \left| {{{\mathbf{R}}_{{\mathbf{h'}},{H_{{\text{EQ,}}\upsilon }}\left( {{{\tilde k}_{\text{I}}} + {{\tilde k}_{\text{F}}}} \right)}}} \right| > {\hat h_{p - 1}} $,跳出循环,
    否则根据式(14)估计各个参数
    5更新${\mathbf{h'}}$$ {\mathbf{h'}} \Leftarrow {\mathbf{h'}} - {\hat h_p}{{\text{e}}^{{\text{j}}{{\hat \phi }_p}}}{\hat \varphi _p}\left[ {{{\hat l}_p}} \right]{H_{{\text{EQ,}}\upsilon }}\left( {{{\hat k}_{p,{\text{I}}}} + {{\hat k}_{p,{\text{F}}}}} \right) $
    6更新估计路径$p$$p \Leftarrow p{\text{ + }}1$
    72级循环即关于$p$迭代
    停止条件
    当满足$ \left| {{{\mathbf{R}}_{{\mathbf{h'}},{H_{{\text{EQ,}}\upsilon }}\left( {{{\hat k}_{p,{\text{I}}}} + {{\hat k}_{p,{\text{F}}}}} \right)}}} \right| < \left\{ \begin{gathered} \alpha \left| {\sum\nolimits_{d = 1}^N {{{\hat H}_{{\text{EQ}}}}\left[ {d,{{\hat l}_p}} \right]} } \right| \hfill \\ \beta \sigma \hfill \\ \end{gathered} \right. $ ,停止迭代转到步骤2,

    否则转到步骤3继续迭代
    8输出所有路径信道估计量输出所有估计路径$p$的$ {\hat k_{p,{\text{I}}}} + {\hat k_{p,{\text{F}}}} $,$ {\hat l_p} $,$ {\hat h_p} $,$ {\hat \varphi _p} $,${{\rm{e}}^{ {\text{j} }{ {\hat \phi }_p} } }$
    下载: 导出CSV

    表  2  计算复杂度比较

    系统PRS-PMF算法计算复杂度文献[10]算法计算复杂度
    $N = 8,M = 16,P = 4$$O\left( {15360} \right)$$O\left( {40960} \right)$
    $N = 16,M = 32,P = 6$$O\left( {122880} \right)$$O\left( {491520} \right)$
    $N = 16,M = 64,P = 10$$O\left( {409600} \right)$$O\left( {1638400} \right)$
    下载: 导出CSV

    表  4  仿真参数设置

    参数名称参数数值
    一个OTFS符号子载波数量(M)256
    OTFS符号数量(N)32
    载波频率$\left( {{f_c}} \right)$0.8 GHz
    子载波间隔$\left( {\Delta f} \right)$15 kHz
    CP循环前缀长度$\left( {{M_{{\text{cp}}}}} \right)$17(6.67%M)
    调制方式16-QAM
    信道编码Turbo(1/2码率)
    信道模型EVA
    用户速度500 km/h
    迭代停止系数$\alpha $1/100
    迭代停止系数$\beta $1/40
    搜索分数多普勒分辨率倒数$\left( D \right)$10
    循环次数$\left( C \right)$20000
    下载: 导出CSV
  • [1] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6.
    [2] 解志斌, 薛同思, 田雨波, 等. 一种稀疏增强的压缩感知MIMO-OFDM信道估计算法[J]. 电子与信息学报, 2013, 35(3): 665–670. doi: 10.3724/SP.J.1146.2012.00860

    XIE Zhibin, XUE Tongsi, TIAN Yubo, et al. A sparsity enhanced channel estimation algorithm based on compressed sensing in MIMO-OFDM systems[J]. Journal of Electronics &Information Technology, 2013, 35(3): 665–670. doi: 10.3724/SP.J.1146.2012.00860
    [3] SURABHI G D, AUGUSTINE R M, and CHOCKALINGAM A. On the diversity of uncoded OTFS modulation in doubly-dispersive channels[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3049–3063. doi: 10.1109/TWC.2019.2909205
    [4] DAS S and SCHNITER P. Max-SINR ISI/ICI-shaping multicarrier communication over the doubly dispersive channel[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5782–5795. doi: 10.1109/TSP.2007.901660
    [5] SHEN Wenqian, DAI Linglong, AN Jianping, et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204–4217. doi: 10.1109/TSP.2019.2919411
    [6] RAVITEJA P, PHAN K T, JIN Qianyu, et al. Low-complexity iterative detection for orthogonal time frequency space modulation[C]. 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 2018: 1–6.
    [7] FISH A, GUREVICH S, HADANI R, et al. Delay-Doppler channel estimation in almost linear complexity[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7632–7644. doi: 10.1109/TIT.2013.2273931
    [8] RAVITEJA P, PHAN K T, and HONG Yi. Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906–4917. doi: 10.1109/TVT.2019.2906357
    [9] MURALI K R and CHOCKALINGAM A. On OTFS modulation for high-Doppler fading channels[C]. 2018 Information Theory and Applications Workshop (ITA), San Diego, USA, 2018: 1–10.
    [10] HASHIMOTO N, OSAWA N, YAMAZAKI K, et al. Channel estimation and equalization for CP-OFDM-based OTFS in fractional Doppler channels[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–7.
    [11] 卢明飞, 彭思愿, 陈霸东. 最大互相关熵多凸组合自适应滤波算法[J]. 电子与信息学报, 2021, 43(2): 263–269. doi: 10.11999/JEIT200288

    LU Mingfei, PENG Siyuan, and CHEN Badong. Convex combination of multiple adaptive filters under the maximum correntropy criterion[J]. Journal of Electronics &Information Technology, 2021, 43(2): 263–269. doi: 10.11999/JEIT200288
    [12] WEI Zhiqiang, YANG Weijie, LI Shuangyang, et al. Transmitter and receiver window designs for orthogonal time-frequency space modulation[J]. IEEE Transactions on Communications, 2021, 69(4): 2207–2223. doi: 10.1109/TCOMM.2021.3051386
    [13] WEI Zhiqiang, NG D W K, and YUAN Jinhong. NOMA for hybrid mmWave communication systems with beamwidth control[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 567–583. doi: 10.1109/JSTSP.2019.2901593
    [14] 惠永涛, 李兵兵, 同钊, 等. 时频双选信道OFDM系统的低复杂度MMSE-SD算法[J]. 电子与信息学报, 2013, 35(2): 261–266. doi: 10.3724/SP.J.1146.2012.00805

    HUI Yongtao, LI Bingbing, TONG Zhao, et al. Low-complexity MMSE-SD algorithm for OFDM systems over doubly-selective channels[J]. Journal of Electronics &Information Technology, 2013, 35(2): 261–266. doi: 10.3724/SP.J.1146.2012.00805
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1426
  • HTML全文浏览量:  644
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2022-01-13
  • 录用日期:  2022-01-17
  • 网络出版日期:  2022-01-24
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回