Performance Analysis and Parameter Design of Synthetic Aperture Passive Positioning
-
摘要: 合成孔径无源定位中,为获得高的2维分辨率,需要长的合成孔径,但斜距历程的多项式近似会带来距离定位的误差。针对此问题,该文分析了合成孔径定位中距离误差的影响因素,给出了定位误差的近似表达式,同时分析了距离和方位分辨率的影响因素,给出了分辨率的分析方法。在此基础上,综合考虑定位精度和分辨率的约束条件,给出了合成孔径长度参数的优化方法。仿真结果验证了方法的有效性。Abstract: A long synthetic aperture is required to obtain two-dimensional high resolution in synthetic aperture passive positioning. However, the polynomial approximation of the slant range causes range positioning errors. To resolve the problem, the influencing factors of the range positioning error are analyzed in this paper and an approximate expression of the positioning error is given. The influencing factors of range resolution and azimuth resolution are also analyzed, and the resolution analysis method is studied. On this basis, the optimization method of synthetic aperture length is given by combining the constraints of positioning accuracy and resolution. The simulation results verify the effectiveness of the proposed method.
-
表 1 不同距离的波束宽度限制
距离(km) 波束宽度(°) 20 4.55 40 3.83 60 3.46 80 3.22 -
[1] 张辉, 陈赞. 固定辐射源目标单机无源定位方法[J]. 通信技术, 2021, 54(3): 575–579. doi: 10.3969/j.issn.1002-0802.2021.03.008ZHANG Hui and CHEN Zan. Algorithm of passive location of airborne for communication station[J]. Communications Technology, 2021, 54(3): 575–579. doi: 10.3969/j.issn.1002-0802.2021.03.008 [2] 吕日毅, 李超, 张阳. 单机无源定位飞行方法仿真研究[J]. 弹箭与制导学报, 2020, 40(6): 82–85. doi: 10.15892/j.cnki.djzdxb.2020.06.019LYU Riyi, LI Chao, and ZHANG Yang. Research on flight method simulation of single aircraft passive positioning[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2020, 40(6): 82–85. doi: 10.15892/j.cnki.djzdxb.2020.06.019 [3] 罗景青, 马贤同, 吴世龙. 目标的位置信息场定位技术[J]. 电光与控制, 2015, 22(4): 1–7. doi: 10.3969/j.issn.1671-637X.2015.04.001LUO Jingqing, MA Xiantong, and WU Shilong. Technology of target position information field locating[J]. Electronics Optics &Control, 2015, 22(4): 1–7. doi: 10.3969/j.issn.1671-637X.2015.04.001 [4] 吴癸周, 郭福成, 张敏. 信号直接定位技术综述[J]. 雷达学报, 2020, 9(6): 998–1013. doi: 10.12000/JR20040WU Guizhou, GUO Fucheng, and ZHANG Min. Direct position determination: An overview[J]. Journal of Radars, 2020, 9(6): 998–1013. doi: 10.12000/JR20040 [5] 许志伟, 王运锋, 张小琴. 基于只测向的机载单站定位技术[J]. 四川大学学报:自然科学版, 2017, 54(2): 293–297.XU Zhiwei, WANG Yunfeng, and ZHANG Xiaoqin. Airborne single-station passive location technology only based on bearing method[J]. Journal of Sichuan University:Natural Science Edition, 2017, 54(2): 293–297. [6] 莫成坤, 陈树新, 吴昊, 等. 基于角度信息的递推最小二乘无源定位算法[J]. 计算机测量与控制, 2014, 22(9): 2863–2866. doi: 10.16526/j.cnki.11-4762/tp.2014.09.050MO Chengkun, CHEN Shuxin, WU Hao, et al. Recursion least-squares passive location algorithm based on angle information[J]. Computer Measurement &Control, 2014, 22(9): 2863–2866. doi: 10.16526/j.cnki.11-4762/tp.2014.09.050 [7] 陆安南, 杨小牛. 最小相位误差单星无源定位法[J]. 上海航天, 2007, 24(3): 6–9. doi: 10.19392/j.cnki.1671-7341.2014.07.055LU Annan and YANG Xiaoniu. Passive location with minimizing phase difference error by single satellite[J]. Aerospace Shanghai, 2007, 24(3): 6–9. doi: 10.19392/j.cnki.1671-7341.2014.07.055 [8] 游屈波, 吴耀云, 胡飞, 等. 基于机载单站双航段联合估计的纯方位定位跟踪算法[J]. 电子信息对抗技术, 2019, 34(5): 28–31. doi: 10.3969/j.issn.1674-2230.2019.05.007YOU Qubo, WU Yaoyun, HU Fei, et al. Bearing-only target location and tracking algorithm based on joint estimation with two flight segments of single observer[J]. Electronic Information Warfare Technology, 2019, 34(5): 28–31. doi: 10.3969/j.issn.1674-2230.2019.05.007 [9] 李腾, 郭福成, 姜文利. 星载干涉仪无源定位新方法及其误差分析[J]. 国防科技大学学报, 2012, 34(3): 164–170. doi: 10.3969/j.issn.1001-2486.2012.03.032LI Teng, GUO Fucheng, and JIANG Wenli. A novel method for satellite-borne passive localization using interferometer and its error analysis[J]. Journal of National University of Defense Technology, 2012, 34(3): 164–170. doi: 10.3969/j.issn.1001-2486.2012.03.032 [10] 张敏, 冯道旺, 郭福成. 基于多普勒变化率的单星无源定位[J]. 航天电子对抗, 2009, 25(5): 11–13,64. doi: 10.3969/j.issn.1673-2421.2009.05.004ZHANG Min, FENG Daowang, and GUO Fucheng. Passive localization by a single satellite based on Doppler rate-of-change[J]. Aerospace Electronic Warfare, 2009, 25(5): 11–13,64. doi: 10.3969/j.issn.1673-2421.2009.05.004 [11] 李华, 郭福成. 等高程运动假设的单星角度融合多普勒变化率跟踪方法[J]. 空间电子技术, 2018, 15(4): 41–48. doi: 10.3969/j.issn.1674-7135.2018.04.009LI Hua and GUO Fucheng. A fusion of angle and Doppler rate-of-changing based tracking method forconstant altitude moving target by single satellite[J]. Space Electronic Technology, 2018, 15(4): 41–48. doi: 10.3969/j.issn.1674-7135.2018.04.009 [12] WEISS A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5): 513–516. doi: 10.1109/LSP.2004.826501 [13] BAR-SHALOM O and WEISS A J. Direct emitter geolocation under local scattering[J]. Signal Processing, 2015, 117: 102–114. doi: 10.1016/j.sigpro.2015.05.003 [14] REUVEN A M and WEISS A J. Direct position determination of cyclostationary signals[J]. Signal Processing, 2009, 89(12): 2448–2464. doi: 10.1016/j.sigpro.2009.04.009 [15] BAR-SHALOM O and WEISS A J. Efficient direct position determination of orthogonal frequency division multiplexing signals[J]. IET Radar, Sonar & Navigation, 2009, 3(2): 101–111. doi: 10.1049/iet-rsn:20080097 [16] WU Guizhou, ZHANG Min, and GUO Fucheng. Self-calibration direct position determination using a single moving array with sensor gain and phase errors[J]. Signal Processing, 2020, 173: 107587. doi: 10.1016/j.sigpro.2020.107587 [17] 张敏, 郭福成, 周一宇. 基于单个长基线干涉仪的运动单站直接定位[J]. 航空学报, 2013, 34(2): 378–386. doi: 10.7524/S1000-6893.2013.0043ZHANG Min, GUO Fucheng, and ZHOU Yiyu. A single moving observer direct position determination method using a long baseline interferometer[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 378–386. doi: 10.7524/S1000-6893.2013.0043 [18] TZAFRI L and WEISS A J. Application of Capon method to direct position determination[J]. ICT Express, 2016, 2(1): 5–9. doi: 10.1016/j.icte.2016.02.010 [19] GARCIA N, WYMEERSCH H, LARSSON E G, et al. Direct localization for massive MIMO[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2475–2487. doi: 10.1109/TSP.2017.2666779 [20] TIRER T and WEISS A J. High resolution direct position determination of radio frequency sources[J]. IEEE Signal Processing Letters, 2016, 23(2): 192–196. doi: 10.1109/LSP.2015.2503921 [21] TZAFRI L and WEISS A J. High-resolution direct position determination using MVDR[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6449–6461. doi: 10.1109/TWC.2016.2585116 [22] TIRER T and WEISS A J. Performance analysis of a high-resolution direct position determination method[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 544–554. doi: 10.1109/TSP.2016.2621729 [23] LI Jinzhou, YANG Le, GUO Fucheng, et al. Coherent summation of multiple short-time signals for direct positioning of a wideband source based on delay and Doppler[J]. Digital Signal Processing, 2016, 48: 58–70. doi: 10.1016/j.dsp.2015.09.008 [24] WEISS A J. Direct geolocation of wideband emitters based on delay and Doppler[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2513–2521. doi: 10.1109/TSP.2011.2128311 [25] PICARD J S and WEISS A J. Direct position determination sensitivity to NLOS propagation effects on Doppler-shift[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3870–3881. doi: 10.1109/TSP.2019.2923152 [26] XIA Wei and LIU Wei. Distributed adaptive direct position determination of emitters in sensor networks[J]. Signal Processing, 2016, 123: 100–111. doi: 10.1016/j.sigpro.2016.01.002 [27] BAR-SHALOM O and WEISS A J. Emitter geolocation using single moving receiver[J]. Signal Processing, 2014, 105: 70–83. doi: 10.1016/j.sigpro.2014.05.006 [28] TIRER T and WEISS A J. High resolution localization of narrowband radio emitters based on Doppler frequency shifts[J]. Signal Processing, 2017, 141: 288–298. doi: 10.1016/j.sigpro.2017.06.019 [29] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology [M]. Beijing, China: Publishing House of Electronics Industry, 2005. [30] LIU Baochang, WANG Tong, and BAO Zheng. Slant-range velocity estimation based on small-FM-rate chirp[J]. Signal Processing, 2008, 88(10): 2472–2482. doi: 10.1016/j.sigpro.2008.04.013 [31] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. Beam steering SAR data processing by a generalized PFA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4366–4377. doi: 10.1109/TGRS.2012.2237407 [32] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. A unified focusing algorithm for several modes of SAR based on FrFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3139–3155. doi: 10.1109/TGRS.2012.2212280 [33] 王裕旗, 孙光才, 杨军, 等. 基于长合成孔径的辐射源成像定位算法[J]. 雷达学报, 2020, 9(1): 185–194. doi: 10.12000/JR19080WANG Yuqi, SUN Guangcai, YANG Jun, et al. Passive localization algorithm for radiation source based on long synthetic aperture[J]. Journal of Radars, 2020, 9(1): 185–194. doi: 10.12000/JR19080