高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应网络编码的异构无线链路并发传输控制方法研究

赵夙 王伟 朱晓荣 倪钦崟

赵夙, 王伟, 朱晓荣, 倪钦崟. 基于自适应网络编码的异构无线链路并发传输控制方法研究[J]. 电子与信息学报, 2022, 44(8): 2777-2784. doi: 10.11999/JEIT210520
引用本文: 赵夙, 王伟, 朱晓荣, 倪钦崟. 基于自适应网络编码的异构无线链路并发传输控制方法研究[J]. 电子与信息学报, 2022, 44(8): 2777-2784. doi: 10.11999/JEIT210520
ZHAO Su, WANG Wei, ZHU Xiaorong, NI Qinyin. Research on Concurrent Transmission Control of Heterogeneous Wireless Links Based on Adaptive Network Coding[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2777-2784. doi: 10.11999/JEIT210520
Citation: ZHAO Su, WANG Wei, ZHU Xiaorong, NI Qinyin. Research on Concurrent Transmission Control of Heterogeneous Wireless Links Based on Adaptive Network Coding[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2777-2784. doi: 10.11999/JEIT210520

基于自适应网络编码的异构无线链路并发传输控制方法研究

doi: 10.11999/JEIT210520
基金项目: 国家自然科学基金(92067101, 61871237),江苏省高校“青蓝工程”和江苏省重点研发计划(BE2021013-3)
详细信息
    作者简介:

    赵夙:女,1964年生,副教授,主要研究方向为移动通信与无线技术、无线资源动态分配技术和移动网络优化技术

    王伟:男,1997年生,硕士生,研究方向为异构无线链路并发传输

    朱晓荣:女,1977年生,教授、博士生导师,主要研究方向为5G通信系统、异构网络、物联网等关键技术及系统研发

    倪钦崟:男,1998年生,硕士生,研究方向为6G网络资源优化算法

    通讯作者:

    朱晓荣 xrzhu@njupt.edu.cn

  • 中图分类号: TN915.81

Research on Concurrent Transmission Control of Heterogeneous Wireless Links Based on Adaptive Network Coding

Funds: The National Natural Science Foundation of China (92067101, 61871237), The “Blue Project” of Universities in Jiangsu Province and the Key R&D Program of Jiangsu Province (BE2021013-3)
  • 摘要: 随着高清视频直播、虚拟现实等高速率业务不断兴起,单一的网络很难满足用户的业务需求。利用多种异构链路实现并发传输,可以有效聚合带宽资源,提高服务质量。但是,在异构无线网络中,由于链路状况复杂多变,多条链路质量不一,现有的多路径并发传输算法并不能自适应地根据复杂的网络状况做出最优的决策。该文提出了一种自适应网络编码的多路径并发传输控制算法,引入Asynchronous Advantage Actor-Critic(A3C)强化学习,通过自适应的网络编码,根据当前网络状况智能地选择编码分组大小和冗余大小,从而解决数据包的乱序问题。仿真结果表明,该算法能够提高10%左右的传输速率,提升了用户体验。
  • 图  1  系统架构图

    图  2  A3C强化学习示意图

    图  3  自适应网络编码示意图

    图  4  仿真拓扑图

    图  5  决策结果示意图

    图  6  吞吐量对比图

    图  7  传输完成时间随数据包个数变化图

    图  8  接收方缓存时间对比图

    表  1  基于A3C的自适应编码决策算法(算法1)

     输入:全局代理的网络参数${\theta _c}$和${\theta _a}$,全局迭代次数$m$,全局最大
        的迭代次数$M$
     输出:迭代后的网络参数${\theta _c}$和${\theta _a}$
     1:初始化时间$t = 0$
     2:repeat
     3: (1) 初始化起始状态${S_t} = {S_0}$
     4: (2) 初始化网络参数增量${\rm{d}}{\theta _c} = 0$,${\rm{d}}{\theta _a} = 0$
     5: (3) 将全局代理的网络参数赋值给局部代理$\theta _c' = {\theta _c}$,$\theta _a' = {\theta _a}$
     6: (4) for $t = 1,2, \cdots ,T$ $do$
     7:    (a) 基于策略$ \pi ({a}_{t}|{S}_{t};{\theta }_{a}^{\text{'}}) $,执行动作${a_t}$
     8:    (b) 从视频播放环境中获得奖励值${r_t}$和新的状态${S_{t + 1}}$
     9:    (c)$ t\leftarrow t+1,m\leftarrow m+1 $
     10:  end for
     11: (5) 计算状态${S_T}$的值函数$V_\gamma ^{\pi (\theta _a^,)}({S_T};\theta _c')$
     12: (6) for $ i=T,T-1,\cdots ,1 $ do
     13:     (a)更新$ {\theta }_{a} $的增量
     14:     ${\rm{d}}{\theta }_{a}\leftarrow {\rm{d}}{\theta }_{a}+{\nabla }_{ {\theta }_{a}^{,} }{\mathrm{log} }_{ {}_{2} }\pi ({a}_{i}|{S}_{i};{\theta }_{a}^{\text{'} }){A}^{\pi ({\theta }_{c}^{\text{'} })}$
            $+\varphi {\nabla }_{{\theta }_{a}^{\text{'}}}H(\pi ({a}_{i}|{S}_{i};{\theta }_{a}^{\text{'}})) $
     15:     (b)更新${\theta _c}$的增量
     16:      ${\rm{d}}{\theta _c} \leftarrow {\rm{d}}{\theta _c} + {\nabla _{\theta _c'} }{({r_i} + \gamma V_\gamma ^{\pi (\theta _a')}({S_{i + 1} };\theta _c')}$
            $- V_\gamma ^{\pi (\theta _a')}({S_i};\theta _c'))^2$
     17:  end for
     18: (7) 更新全局代理的网络参数
     19:until $m > {{M} }$
    下载: 导出CSV

    表  2  自适应编码算法(算法2)

     1: int $N = 0$;
     2: int $R = 0$;
     3: while(!isEnd){
     4:   //从强化模块获取$N$和$R$
     5:   $N,R = $ReinforcementLearning();
     6:   //从编码矩阵${C_P}$中选取编码系数,编码原始数据包
     7:   获取编码系数${a_1},{a_2}, \cdots ,{a_N}$
     8:   //从冗余编码矩阵${C_r}$中选取编码系数,编码冗余数据包
     9:   获取编码系数${b_1},{b_2}, \cdots ,{b_N}$
     10:   NetworkCoding$(N,R)$;
     11: $\} $
    下载: 导出CSV

    表  3  基于路径质量的数据包分发算法(算法3)

     1:j=null;
     2: ${Q_{\max }} = 0$;
     3: for (每一条路径)$\{ $
     4:  ${Q_i} = ({{\rm{effwnd}}_i} - {{\rm{unAck}}_i}) \times (1 - {{\rm{Pl}}_i})$;
     5:  ${\rm{if}}({Q_i} > {Q_{\max } })\{$
     6:    $j = i$;
     7:    ${Q_{\max }} = {Q_i}$;
     8:  $\} {\rm{else}}$ ${\rm{if}}({Q_{\max } } = {Q_i}\& \& i.{\rm{Bw}} > j.{\rm{Bw}})\{$
     9:    $j = i$;
     10:  $\} $
     11: $\} $
     12: ${\rm{if}}(j! = {\rm{null}})\{$
     13: 将编码数据包发送到路径$j$;
     14: $\} $
    下载: 导出CSV

    表  4  仿真参数设置

    参数Path APath B
    通信方式WiMaxWLAN
    核心网时延(ms)50100
    接入带宽(Mbps)811
    接入链路时延(ms)2045
    下载: 导出CSV

    表  5  多流并发环境参数

    参数参数值参数参数值
    视频块个数48缓冲区起始长度(s)4
    视频块长度(s)4异构链路个数2
    缓冲区容量(s)50缓冲区上溢等待时间(s)0.5
    分组大小范围$N$1-25分组内冗余大小范围$R$0-5
    时延惩罚因子$\beta $0.5重新缓冲惩罚因子$\alpha $0.3
    缓冲区惩罚因子$\lambda $0.2缓冲区长度下限${B_1}$(s)15
    缓冲区长度上限${B_2}$(s)50数据包大小(bytes)1500
    下载: 导出CSV

    表  6  A3C算法参数

    参数参数值参数参数值
    折扣因子$\gamma $0.99Critic 网络的更新步长$a$0.001
    视频信息数量8Actor 网络的更新步长$w$0.01
    局部代理个数$l$16熵的系数$\varphi $0.2
    下载: 导出CSV
  • [1] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [2] WU Jiyan, YUEN C, WANG Ming, et al. Content-aware concurrent multipath transfer for high-definition video streaming over heterogeneous wireless networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(3): 710–723. doi: 10.1109/TPDS.2015.2416736
    [3] XU Changqiao, LIU Tianjiao, GUAN Jianfeng, et al. CMT-QA: Quality-aware adaptive concurrent multipath data transfer in heterogeneous wireless networks[J]. IEEE Transactions on Mobile Computing, 2013, 12(11): 2193–2205. doi: 10.1109/TMC.2012.189
    [4] ZHANG Wei, LEI Weimin, and ZHANG Songyang. A multipath transport scheme for real-time multimedia services based on software-defined networking and segment routing[J]. IEEE Access, 2020, 8: 93962–93977. doi: 10.1109/ACCESS.2020.2994346
    [5] 刘杰民, 白雪松, 王兴伟. 多路径并行传输中传输路径选择策略[J]. 电子与信息学报, 2012, 34(6): 1521–1524. doi: 10.3724/SP.J.1146.2011.01221

    LIU Jiemin, BAI Xuesong, and WANG Xingwei. The strategy for transmission path selection in concurrent multipath transfer[J]. Journal of Electronics &Information Technology, 2012, 34(6): 1521–1524. doi: 10.3724/SP.J.1146.2011.01221
    [6] ZHANG Yuyang, DONG Ping, DU Xiaojiang, et al. BNNC: Improving performance of multipath transmission in heterogeneous vehicular networks[J]. IEEE Access, 2019, 7: 158113–158125. doi: 10.1109/ACCESS.2019.2948954
    [7] HAN Chen, YIN Jun, YE Lei, et al. NCAnt: A network coding-based multipath data transmission scheme for multi-UAV formation flying networks[J]. IEEE Communications Letters, 2021, 25(3): 1041–1044. doi: 10.1109/LCOMM.2020.3039846
    [8] XU Changqiao, LI Zhuofeng, ZHONG Lujie, et al. CMT-NC: Improving the concurrent multipath transfer performance using network coding in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1735–1751. doi: 10.1109/TVT.2015.2409556
    [9] XU Changqiao, WANG Peng, XIONG Chunshan, et al. Pipeline network coding-based multipath data transfer in heterogeneous wireless networks[J]. IEEE Transactions on Broadcasting, 2017, 63(2): 376–390. doi: 10.1109/TBC.2016.2590819
    [10] LI Wenzhong, ZHANG Han, GAO Shaohua, et al. SmartCC: A reinforcement learning approach for multipath TCP congestion control in heterogeneous networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(11): 2621–2633. doi: 10.1109/JSAC.2019.2933761
    [11] STEWART R. RFC 4960 Stream control transmission protocol[S]. Fremont: IETF, 2007.
    [12] HSIEH H Y and SIVAKUMAR R. pTCP: An end-to-end transport layer protocol for striped connections[C]. Proceedings of the 10th IEEE International Conference on Network Protocols, Paris, France, 2002: 24–33.
    [13] ZHANG Ming, LAI Junwen, KRISHNAMURTHY A, et al. A transport layer approach for improving end-to-end performance and robustness using redundant paths[C]. Proceedings of USENIX 2004 Annual Technical Conference, Boston, USA, 2004: 99–112.
    [14] PAASCH C and BONAVENTURE O. Multipath TCP[J]. Communications of the ACM, 2014, 57(4): 51–57. doi: 10.1145/2578901
    [15] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]. Proceedings of the 33rd International Conference on Machine Learning, New York, USA, 2016: 1928–1937.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  330
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2022-03-10
  • 网络出版日期:  2022-04-14
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回