高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矩阵半张量积的信息物理融合系统状态不透明性分析与控制

张志鹏 许倩 夏承遗

张志鹏, 许倩, 夏承遗. 基于矩阵半张量积的信息物理融合系统状态不透明性分析与控制[J]. 电子与信息学报, 2021, 43(12): 3434-3441. doi: 10.11999/JEIT210492
引用本文: 张志鹏, 许倩, 夏承遗. 基于矩阵半张量积的信息物理融合系统状态不透明性分析与控制[J]. 电子与信息学报, 2021, 43(12): 3434-3441. doi: 10.11999/JEIT210492
Zhipeng ZHANG, Qian XU, Chengyi XIA. Semi-tensor Product of Matrices-based Approach to the Opacity Analysis of Cyber Physical Systems[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3434-3441. doi: 10.11999/JEIT210492
Citation: Zhipeng ZHANG, Qian XU, Chengyi XIA. Semi-tensor Product of Matrices-based Approach to the Opacity Analysis of Cyber Physical Systems[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3434-3441. doi: 10.11999/JEIT210492

基于矩阵半张量积的信息物理融合系统状态不透明性分析与控制

doi: 10.11999/JEIT210492
基金项目: 国家自然科学基金(62173247)
详细信息
    作者简介:

    张志鹏:男,1990年生,讲师,研究方向为信息物理系统的隐私分析与安全控制、博弈控制

    许倩:女,1996年生,硕士生,研究方向为信息物理系统的隐私分析

    夏承遗:男,1976年生,教授,研究方向为复杂网络传播、演化博弈理论、大数据分析和信息安全

    通讯作者:

    夏承遗 xialooking@163.com

  • 中图分类号: TP1

Semi-tensor Product of Matrices-based Approach to the Opacity Analysis of Cyber Physical Systems

Funds: The National Natural Science Foundation of China (62173247)
  • 摘要: 状态不透明性作为一种重要的机密属性,能够表征入侵者窃取系统隐私信息的能力。针对带有不可观测事件的信息物理融合系统(CPSs),该文提出一种基于矩阵半张量积(STP)的代数状态空间方法,并且分析与验证CPSs的状态不透明性。首先利用矩阵STP理论对CPSs的状态演化进行建模,得到系统的动态代数表达式,然后利用STP运算的特性,给出验证系统当前状态不透明性的充分必要代数条件。最后,通过数值仿真算例验证了方法的有效性。该文提出的基于矩阵STP方法为CPSs相关隐私分析与安全控制研究提供了一个新的思路和框架。
  • 图  1  系统$A = \left( {X,E,{E_o},\sigma ,{x_0}} \right)$

    图  2  验证算法的流程图

    表  1  常用符号

    概念定义
    ${\mathbb{N}^ + }$正整数的集合
    ${\mathbb{R}^n}$维数为$n$的所有实向量的集合
    $\left| X \right| = n$集合$X$的基数
    ${\mathbb{R}^{n \times m}}$维数为$n \times m$的实矩阵集
    ${\mathbb{B}^{n \times m}}$维数为$n \times m$的布尔矩阵集
    ${\boldsymbol{R}}\left( {i,j} \right)$矩阵${\boldsymbol{R}}$的第$i$行第$j$列元素
    ${\text{Co} }{ {\text{l} }_i}\left( {\boldsymbol{R}} \right)$, ${{\rm{Row}}_j}\left( {\boldsymbol{R} } \right)$分别为矩阵${\boldsymbol{R}}$的第$i$列,第$j$行
    ${\rm{Col}}\left( {\boldsymbol{R} } \right)$, ${\rm{Row}}\left( {\boldsymbol{R} } \right)$矩阵${\boldsymbol{R}}$的所有列和所有行的集合
    ${{\boldsymbol{I}}_n}$维数为$n$的单位矩阵
    $\delta _n^i$单位矩阵${{\boldsymbol{I}}_n}$的第$i$列
    ${\varDelta _n}$$\left\{ {\delta _n^1,\delta _n^2, \cdots ,\delta _n^n} \right\}$
    ${2^X}$集合$X$的幂集合
    $\displaystyle\sum\nolimits_\mathbb{B}^{i \in R} { {{\boldsymbol{M}}_i} }$所有$i \in {\boldsymbol{R}}$矩阵${{\boldsymbol{M}}_i}$的布尔和
    下载: 导出CSV
  • [1] 王鹏, 向阳, 宗宇伟, 等. 基于时空π-演算的信息物理融合系统组件可替换性判定[J]. 电子与信息学报, 2012, 34(10): 2494–2500.

    WANG Peng, XIANG Yang, ZONG Yuwei, et al. Substitution determination of cyber-physical system components via time-space π-calculus[J]. Journal of Electronics &Information Technology, 2012, 34(10): 2494–2500.
    [2] 汤巍, 景博, 黄以锋. 基于关联图模型的信息物理融合系统感知数据可信性分析[J]. 电子与信息学报, 2015, 37(3): 679–685. doi: 10.11999/JEIT140437

    TANG Wei, JING Bo, and HUANG Yifeng. Creditability analysis of sensor data in the cyber-physical system based on the relationship diagram model[J]. Journal of Electronics &Information Technology, 2015, 37(3): 679–685. doi: 10.11999/JEIT140437
    [3] LAFORTUNE S, LIN Feng, and HADJICOSTIS C N. On the history of diagnosability and opacity in discrete event systems[J]. Annual Reviews in Control, 2018, 45: 257–266. doi: 10.1016/j.arcontrol.2018.04.002
    [4] JACOB R, LESAGE J J, and FAURE J M. Overview of discrete event systems opacity: Models, validation, and quantification[J]. Annual Reviews in Control, 2016, 41: 135–146. doi: 10.1016/j.arcontrol.2016.04.015
    [5] SABOORI A and HADJICOSTIS C N. Notions of security and opacity in discrete event systems[C]. The 2007 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007: 5056–5061.
    [6] SABOORI A and HADJICOSTIS C N. Verification of K-step opacity and analysis of its complexity[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(3): 549–559. doi: 10.1109/TASE.2011.2106775
    [7] SABOORI A and HADJICOSTIS C N. Verification of infinite-step opacity and complexity considerations[J]. IEEE Transactions on Automatic Control, 2012, 57(5): 1265–1269. doi: 10.1109/TAC.2011.2173774
    [8] YIN Xiang and LAFORTUNE S. A new approach for the verification of infinite-step and K-step opacity using two-way observers[J]. Automatica, 2017, 80: 162–171. doi: 10.1016/j.automatica.2017.02.037
    [9] ZHANG Kuize, YIN Xiang, and ZAMANI M. Opacity of nondeterministic transition systems: A (Bi)simulation relation approach[J]. IEEE Transactions on Automatic Control, 2019, 64(12): 5116–5123. doi: 10.1109/TAC.2019.2908726
    [10] MOHAJERAN D and LAFORTUNE S. Transforming opacity verification to nonblocking verification in modular systems[J]. IEEE Transactions on Automatic Control, 2020, 65(4): 1739–1746. doi: 10.1109/TAC.2019.2934708
    [11] CHENG Daizhan and QI Hongsheng. A linear representation of dynamics of Boolean networks[J]. IEEE Transactions on Automatic Control, 2010, 55(10): 2251–2258. doi: 10.1109/TAC.2010.2043294
    [12] CHENG Daizhan, QI Hongsheng, and LI Zhiqiang. Analysis and Control of Boolean Networks[M]. London: Springer, 2011: 18–22.
    [13] CHENG Daizhan and LIU Zequn. Topologies on quotient space of matrices via semi-tensor product[J]. Asian Journal of Control, 2019, 21(6): 2614–2623. doi: 10.1002/asjc.2156
    [14] GUO Yuqian, DING Yong, and XIE Dian. Invariant subset and set stability of Boolean networks under arbitrary switching signals[J]. IEEE Transactions on Automatic Control, 2017, 62(8): 4209–4214. doi: 10.1109/TAC.2017.2688409
    [15] LI Haitao, XU Xiaojing, and DING Xueying. Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect[J]. Applied Mathematics and Computation, 2019, 347: 557–565. doi: 10.1016/j.amc.2018.11.018
    [16] LIANG Jinling, CHEN Hongwei, and LIU Yang. On algorithms for state feedback stabilization of Boolean control networks[J]. Automatica, 2017, 84: 10–16. doi: 10.1016/j.automatica.2017.06.040
    [17] FAN Hongbiao, FENG Jun’e, MENG Min, et al. General decomposition of fuzzy relations: Semi-tensor product approach[J]. Fuzzy Sets and Systems, 2020, 384: 75–90.
    [18] FU Shihua, CHENG Daizhan, FENG Jun’e, et al. Matrix expression of finite Boolean-type algebras[J]. Applied Mathematics and Computation, 2021, 395: 125880. doi: 10.1016/j.amc.2020.125880
    [19] ZHAO Yin, QI Hongsheng, and CHENG Daizhan. Input-state incidence matrix of Boolean control networks and its applications[J]. Systems & Control Letters, 2010, 59(12): 767–774.
    [20] 韩晓光, 陈增强, 刘忠信, 等. 有界Petri网系统稳定性与镇定性分析的矩阵半张量积方法[J]. 中国科学:信息科学, 2016, 46(11): 1542–1554.

    HAN Xiaoguang, CHEN Zengqiang, LIU Zhongxin, et al. Semi-tensor product of matrices approach to stability and stabilization analysis of bounded Petri net systems[J]. Scientia Sinica Informationis, 2016, 46(11): 1542–1554.
    [21] ZHANG Zhipeng, CHEN Zengqiang, HAN Xiaoguang, et al. Stabilization of probabilistic finite automata based on semi-tensor product of matrices[J]. Journal of the Franklin Institute, 2020, 357(9): 5173–5186.
    [22] YUE Jumei, YAN Yongyi, and CHEN Zengqiang. Three matrix conditions for the reduction of finite automata based on the theory of semi-tensor product of matrices[J]. Science China Information Sciences, 2020, 63(2): 129203. doi: 10.1007/s11432-018-9739-9
    [23] ZHANG Zhipeng, CHEN Zengqiang, and LIU Zhongxin. Reachability and controllability analysis of probabilistic finite automata via a novel matrix method[J]. Asian Journal of Control, 2019, 21(6): 2578–2586. doi: 10.1002/asjc.2160
    [24] CHENG Daizhan, HE Fenghua, QI Hongsheng, et al. Modeling, analysis and control of networked evolutionary games[J]. IEEE Transactions on Automatic Control, 2015, 60(9): 2402–2415. doi: 10.1109/TAC.2015.2404471
    [25] XU Xiangru and HONG Yiguang. Matrix expression and reachability analysis of finite automata[J]. Journal of Control Theory and Applications, 2012, 10(2): 210–215. doi: 10.1007/s11768-012-1178-4
    [26] ZAHNG Zhipeng, XIA Chengyi, and CHEN Zengqiang. On the stabilization of nondeterministic finite automata via static output feedback[J]. Applied Mathematics and Computation, 2020, 365: 124687. doi: 10.1016/j.amc.2019.124687
    [27] ZHANG Zhipeng, SHU Shaolong, and XIA Chengyi. Networked opacity for finite state machine with bounded communication delays[J]. Information Sciences, 2021, 572: 57–66. doi: 10.1016/j.ins.2021.04.072
    [28] HAN Xiaoguang, CHEN Zengqiang, and ZHAO Jiemei. Matrix approach to detectability of discrete event systems under partial observation[C]. The 13th IEEE Conference on Automation Science and Engineering, Xi’an, China, 2017: 187–192.
    [29] CHEN Zengqiang, ZHOU Yingrui, ZHANG Zhipeng, et al. Semi-tensor product of matrices approach to the problem of fault detection for discrete event systems (DESs)[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(12): 3098–3102. doi: 10.1109/TCSII.2020.2967062
    [30] ZAHNG Zhipeng, XIA Chengyi, CHEN Shengyong, et al. Reachability analysis of networked finite state machine with communication losses: A switched perspective[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(5): 845–853. doi: 10.1109/JSAC.2020.2980920
    [31] 杨卓璇, 马源培, 李慧嘉. 基于DEA模型的中国水行业上市企业的效率和业务类型关系研究[J]. 聊城大学学报:自然科学版, 2020, 33(6): 12–26.

    YANG Zhuoxuan, MA Yuanpei, and LI Huijia. The relationship between efficiency and services types of water industry enterprises in China based on DEA model[J]. Journal of Liaocheng University:Natural Science Edition, 2020, 33(6): 12–26.
    [32] 马源培, 杨卓璇, 李慧嘉. 结合Bass模型和LTV的创新产品扩散预测[J]. 聊城大学学报:自然科学版, 2020, 33(4): 26–32.

    MA Yuanpei, YANG Zhuoxuan, and LI Huijia. Innovative product diffusion forecasting combined Bass model and LTV[J]. Journal of Liaocheng University:Natural Science Edition, 2020, 33(4): 26–32.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  1176
  • HTML全文浏览量:  433
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2021-10-29
  • 网络出版日期:  2021-11-14
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回