高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阵元位置互质的线性阵列:互耦分析和角度估计

何劲 唐莽 舒汀 郁文贤

何劲, 唐莽, 舒汀, 郁文贤. 阵元位置互质的线性阵列:互耦分析和角度估计[J]. 电子与信息学报, 2022, 44(8): 2852-2858. doi: 10.11999/JEIT210489
引用本文: 何劲, 唐莽, 舒汀, 郁文贤. 阵元位置互质的线性阵列:互耦分析和角度估计[J]. 电子与信息学报, 2022, 44(8): 2852-2858. doi: 10.11999/JEIT210489
HE Jin, TANG Mang, SHU Ting, YU Wenxian. Linear Coprime Sensor Location Arrays: Mutual Coupling Effect and Angle Estimation[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2852-2858. doi: 10.11999/JEIT210489
Citation: HE Jin, TANG Mang, SHU Ting, YU Wenxian. Linear Coprime Sensor Location Arrays: Mutual Coupling Effect and Angle Estimation[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2852-2858. doi: 10.11999/JEIT210489

阵元位置互质的线性阵列:互耦分析和角度估计

doi: 10.11999/JEIT210489
基金项目: 国家自然科学基金(61771302)
详细信息
    作者简介:

    何劲:男,1980年生,副研究员,主要研究方向为阵列信号处理、雷达信号处理

    唐莽:男,1976年生,博士生,主要研究方向为阵列信号处理、雷达信号处理

    舒汀:男,1981年生,副研究员,主要研究方向为阵列信号处理、雷达信号处理

    郁文贤:男,1964年生,教授,主要研究方向为雷达信号处理、遥感信号处理

    通讯作者:

    何劲 jinhe@sjtu.edu.cn

  • 中图分类号: TN911

Linear Coprime Sensor Location Arrays: Mutual Coupling Effect and Angle Estimation

Funds: The National Natural Science Foundation of China (61771302)
  • 摘要: 该文研究了阵元位置互质的线性阵列(CLA)的互耦分析和角度估计问题。首先,给出了阵元位置互质的线性阵列的定义,证明了其导向矢量是不模糊的。随后,利用高阶累积量,建立了阵列输出信号的3阶张量模型,并通过张量分解得到导向矢量的估计。最后,利用得到的导向矢量估计,推导了一种无模糊的信号角度估计的方法。CLA可将相邻阵元间的间距设计远大于半波长,因此可显著降低阵列互耦效应。通过阻抗匹配互耦模型比较了CLA和常用典型阵列结构的互耦与角度估计性能,表明了CLA的有效性。
  • 图  1  阵元位置互质的线性阵列示意图

    图  2  互耦泄漏因子随阵元个数的变化关系

    图  3  角度估计的均方根误差随信噪比的变化关系,未考虑互耦

    图  4  角度估计的均方根误差随信噪比的变化关系,考虑互耦

    图  5  角度估计的均方根误差随信噪比的变化关系,考虑互耦

  • [1] HERO A, MESSER H, GOLDBERG J, et al. Highlights of statistical signal and array processing[J]. IEEE Signal Processing Magazine, 1998, 15(5): 21–64. doi: 10.1109/79.708539
    [2] 张小飞, 陈华伟, 仇小锋, 等. 阵列信号处理及MATLAB实现[M]. 北京: 电子工业出版社, 2015: 87–145.
    [3] 张小飞, 李建峰, 徐大专. 传感器阵列信源定位[M]. 北京: 电子工业出版社, 2018: 36–112.
    [4] PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264
    [5] HAN Keyong and NEHORAI A. Wideband Gaussian source processing using a linear nested array[J]. IEEE Signal Processing Letters, 2013, 20(11): 1110–1113. doi: 10.1109/LSP.2013.2281514
    [6] HAN Keyong and NEHORAI A. Nested array processing for distributed sources[J]. IEEE Signal Processing Letters, 2014, 21(9): 1111–1114. doi: 10.1109/LSP.2014.2325000
    [7] HAN Keyong and NEHORAI A. Nested vector-sensor array processing via tensor modeling[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2542–2553. doi: 10.1109/TSP.2014.2314437
    [8] HE Jin, ZHANG Zenghui, SHU Ting, et al. Direction finding of multiple partially polarized signals with a nested cross-diople array[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1679–1682. doi: 10.1109/LAWP.2017.2665591
    [9] ZHENG Zhi, FU Mingcheng, WANG Wenqin, et al. Localization of mixed near-field and far-field sources using symmetric double-nested arrays[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(11): 7059–7070. doi: 10.1109/TAP.2019.2925199
    [10] ZHANG Xiaofei, WANG Yunfei, and ZHENG Wang. Direction of arrival estimation of non-circular signals using modified nested array[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5.
    [11] 李建峰, 蒋德富, 沈明威. 基于平行嵌套阵互协方差的二维波达角联合估计算法[J]. 电子与信息学报, 2017, 39(3): 670–676. doi: 10.11999/JEIT160488

    LI Jianfeng, JIANG Defu, and SHEN Mingwei. Joint two-dimensional direction of arrival estimation based on cross covariance matrix of parallel nested array[J]. Journal of Electronics and Information Technology, 2017, 39(3): 670–676. doi: 10.11999/JEIT160488
    [12] HE Jin, LI Linna, and SHU Ting. 2-D direction finding using parallel nested arrays with full co-array aperture extension[J]. Signal Processing, 2021, 178: 107795. doi: 10.1016/j.sigpro.2020.107795
    [13] ZHENG Zhi and MU Shilin. 2-D direction finding with pair-matching operation for L-shaped nested array[J]. IEEE Communications Letters, 2021, 25(3): 975–979. doi: 10.1109/LCOMM.2020.3033152
    [14] VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    [15] 周成伟, 郑航, 顾宇杰, 等. 互质阵列信号处理研究进展: 波达方向估计与自适应波束成形[J]. 雷达学报, 2019, 8(5): 558–577. doi: 10.12000/JR19068

    ZHOU Chengwei, ZHENG Hang, GU Yujie, et al. Research progress on coprime array signal processing: Direction-of-arrival estimation and adaptive beamforming[J]. Journal of Radars, 2019, 8(5): 558–577. doi: 10.12000/JR19068
    [16] LIU Chunlin and VAIDYANATHAN P P. Super nested arrays: Linear sparse arrays with reduced mutual coupling- Part I: Fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 3997–4012. doi: 10.1109/TSP.2016.2558159
    [17] LIU Jianyan, ZHANG Yanmei, LU Yilong, et al. Augmented nested arrays with enhanced DOF and reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5549–5563. doi: 10.1109/TSP.2017.2736493
    [18] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Generalized nested array: Optimization for degrees of freedom and mutual coupling[J]. IEEE Communications Letters, 2018, 22(6): 1208–1211. doi: 10.1109/LCOMM.2018.2821672
    [19] HE Jin, LI Linna, and SHU Ting. Sparse nested arrays with spatially spread orthogonal dipoles: High accuracy passive direction finding with less mutual coupling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2337–2345. doi: 10.1109/TAES.2021.3054056
    [20] MA Penghui, LI Jianfeng, ZHAO Gaofeng, et al. CAP-3 coprime array for DOA estimation with enhanced uniform degrees of freedom and reduced mutual coupling[J]. IEEE Communications Letters, 2021, 25(6): 1872–1875. doi: 10.1109/LCOMM.2021.3057403
    [21] MENDEL J M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications[J]. Proceedings of the IEEE, 1991, 79(3): 278–305. doi: 10.1109/5.75086
    [22] SIDIROPOULOS N D, BRO R, and GIANNAKIS G B. Parallel factor analysis in sensor array processing[J]. IEEE Transactions on Signal Processing, 2000, 48(8): 2377–2388. doi: 10.1109/78.852018
    [23] BALANIS C A. Antenna Theory: Analysis and Design[M]. 3rd ed. Hoboken, NJ, USA: John Wiley and Sons, 2005: 471–478.
  • 加载中
图(5)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  698
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2022-03-21
  • 网络出版日期:  2022-04-11
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回