高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全局关系注意力引导场景约束的高分辨率遥感影像目标检测

张菁 吴鑫嘉 赵晓蕾 卓力 张洁

张菁, 吴鑫嘉, 赵晓蕾, 卓力, 张洁. 全局关系注意力引导场景约束的高分辨率遥感影像目标检测[J]. 电子与信息学报, 2022, 44(8): 2924-2931. doi: 10.11999/JEIT210466
引用本文: 张菁, 吴鑫嘉, 赵晓蕾, 卓力, 张洁. 全局关系注意力引导场景约束的高分辨率遥感影像目标检测[J]. 电子与信息学报, 2022, 44(8): 2924-2931. doi: 10.11999/JEIT210466
ZHANG Jing, WU Xinjia, ZHAO Xiaolei, ZHUO Li, ZHANG Jie. Scene Constrained Object Detection Method in High-Resolution Remote Sensing Images by Relation-Aware Global Attention[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2924-2931. doi: 10.11999/JEIT210466
Citation: ZHANG Jing, WU Xinjia, ZHAO Xiaolei, ZHUO Li, ZHANG Jie. Scene Constrained Object Detection Method in High-Resolution Remote Sensing Images by Relation-Aware Global Attention[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2924-2931. doi: 10.11999/JEIT210466

全局关系注意力引导场景约束的高分辨率遥感影像目标检测

doi: 10.11999/JEIT210466
基金项目: 国家自然科学基金(61370189),北京市教委-市基金联合资助项目(KZ201810005002), 北京市教育委员会科技计划一般项目(KM202110005027)
详细信息
    作者简介:

    张菁:女,1975年生,教授,研究方向为遥感影像内容分析与理解等

    吴鑫嘉:女,1998年生,硕士生,研究方向为遥感影像目标检测

    赵晓蕾:女,1995年生,硕士,研究方向为遥感影像目标检测

    卓力:女,1971年生,教授,研究方向为图像/视频信号处理

    张洁:女,1977年生,博士,研究方向为遥感数据处理

    通讯作者:

    张菁 zhj@bjut.edu.cn

  • 中图分类号: TN911.73; TP751.1

Scene Constrained Object Detection Method in High-Resolution Remote Sensing Images by Relation-Aware Global Attention

Funds: The National Natural Science Foundation of China (61370189), Beijing Municipal Education Commission Cooperation Beijing Natural Science Foundation (KZ201810005002), The General Program of Beijing Municipal Education Commission (KM202110005027)
  • 摘要: 高分辨率遥感影像中地物目标往往与所处场景类别息息相关,如能充分利用场景对地物目标的约束信息,有望进一步提升目标检测性能。考虑到场景信息和地物目标之间的关联关系,提出全局关系注意力(RGA)引导场景约束的高分辨率遥感影像目标检测方法。首先在多尺度特征融合检测器的基础网络之后,加入全局关系注意力学习全局场景特征;然后以学到的全局场景特征作为约束,结合方向响应卷积模块和多尺度特征模块进行目标预测;最后利用两个损失函数联合优化网络实现目标检测。在NWPU VHR-10数据集上进行了4组实验,在场景信息约束的条件下取得了更好的目标检测性能。
  • 图  1  全局关系引导场景约束的高分辨率遥感影像目标检测方法(OR-FS-SSD+RGA)

    图  2  全局关系注意力结构

    图  3  全局空间关系注意力

    图  4  全局通道关系注意力

    图  5  不同注意力模块的检测结果

    图  6  4个网络中每类目标检测准确率

    图  7  FSSD, FS-SSD, Faster-RCNN, OR-FS-SSD+CA和OR-FS-SSD+RGA-S的主观结果对比

    表  1  OR-FS-SSD+RGA最终预测特征图尺寸

    Pred1Pred2Pred3Pred4Pred5Pred6Pred_avg
    64×6432×3216×168×84×42×216×16
    下载: 导出CSV

    表  2  网络超参数设置

    迭代次数学习率批处理大小动量权重衰减
    1500.001120.90.005
    下载: 导出CSV

    表  3  和主流网络的检测准确率对比

    网络mAP (%)FPS
    Faster-RCNN93.100.09
    YOLOv391.0414.68
    OR-FS-SSD+CA[6]94.7429.57
    LCFFN[14]93.670.35
    GBD[15]93.952.20
    CBD-E[16]94.982.00
    ORSIm[17]95.394.72
    OR-FS-SSD+RGA-S (本文)95.5930.07
    下载: 导出CSV
  • [1] CHENG Gong, ZHOU Peicheng, and HAN Junwei. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405–7415. doi: 10.1109/TGRS.2016.2601622
    [2] RADOVIC M, ADARKWA O, and WANG Qiaosong. Object recognition in aerial images using convolutional neural networks[J]. Journal of Imaging, 2017, 3(2): 21. doi: 10.3390/jimaging3020021
    [3] LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023
    [4] WANG Chen, BAI Xiao, WANG Shuai, et al. Multiscale visual attention networks for object detection in VHR remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 310–314. doi: 10.1109/LGRS.2018.2872355
    [5] LIANG Xi, ZHANG Jing, ZHUO Li, et al. Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(6): 1758–1770. doi: 10.1109/TCSVT.2019.2905881
    [6] ZHAO Xiaolei, ZHANG Jing, TIAN Jimiao, et al. Multiscale object detection in high-resolution remote sensing images via rotation invariant deep features driven by channel attention[J]. International Journal of Remote Sensing, 2021, 42(15): 5764–5783. doi: 10.1080/01431161.2021.1931537
    [7] DIVVALA S K, HOIEM D, HAYS J H, et al. An empirical study of context in object detection[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1271–1278.
    [8] LIU Yong, WANG Ruiping, SHAN Shiguang, et al. Structure inference net: Object detection using scene-level context and instance-level relationships[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6985–6994.
    [9] ZHANG Zhizheng, LAN Cuiling, ZENG Wenjun, et al. Relation-aware global attention for person re-identification[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3183–3192.
    [10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [11] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
    [12] FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3141–3149.
    [13] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    [14] LI Ke, CHENG Gong, BU Shuhui, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2337–2348. doi: 10.1109/TGRS.2017.2778300
    [15] ZENG Xingyu, OUYANG Wanli, YAN Junjie, et al. Crafting GBD-net for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(9): 2109–2123. doi: 10.1109/TPAMI.2017.2745563
    [16] ZHANG Jun, XIE Changming, XU Xia, et al. A contextual bidirectional enhancement method for remote sensing image object detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4518–4531. doi: 10.1109/JSTARS.2020.3015049
    [17] WU Xin, HONG Danfeng, TIAN Jiaojiao, et al. ORSIm detector: A novel object detection framework in optical remote sensing imagery using spatial-frequency channel features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 5146–5158. doi: 10.1109/TGRS.2019.2897139
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  789
  • HTML全文浏览量:  231
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 修回日期:  2021-09-01
  • 网络出版日期:  2022-04-13
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回