高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯混合概率假设密度的运动参数估计组合平滑滤波算法

黄庆东 李晓瑞 曹艺苑 刘青

黄庆东, 李晓瑞, 曹艺苑, 刘青. 基于高斯混合概率假设密度的运动参数估计组合平滑滤波算法[J]. 电子与信息学报, 2022, 44(7): 2488-2495. doi: 10.11999/JEIT210439
引用本文: 黄庆东, 李晓瑞, 曹艺苑, 刘青. 基于高斯混合概率假设密度的运动参数估计组合平滑滤波算法[J]. 电子与信息学报, 2022, 44(7): 2488-2495. doi: 10.11999/JEIT210439
HUANG Qingdong, LI Xiaorui, CAO Yiyuan, LIU Qing. Motion Parameter Estimation Combined Smoothing Filter Algorithm Based on Gaussian Mixture Probability Hypothesis Density[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2488-2495. doi: 10.11999/JEIT210439
Citation: HUANG Qingdong, LI Xiaorui, CAO Yiyuan, LIU Qing. Motion Parameter Estimation Combined Smoothing Filter Algorithm Based on Gaussian Mixture Probability Hypothesis Density[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2488-2495. doi: 10.11999/JEIT210439

基于高斯混合概率假设密度的运动参数估计组合平滑滤波算法

doi: 10.11999/JEIT210439
基金项目: 国防科研试验信息安全实验室基础研究项目(2018XXAQ09)
详细信息
    作者简介:

    黄庆东:男,1976年生,副教授,研究方向为自适应信号处理、多源目标检测与处理

    李晓瑞:女,1996年生,硕士生,研究方向为无线传感器网络,多源信息融合

    曹艺苑:女,1997年生,硕士生,研究方向为无线传感器网络,多源信息融合

    刘青:男,1978年生,教授,研究方向为自动检测与控制

    通讯作者:

    黄庆东 huangqingdong@xupt.edu.cn

  • 中图分类号: TN911.73

Motion Parameter Estimation Combined Smoothing Filter Algorithm Based on Gaussian Mixture Probability Hypothesis Density

Funds: The Basic Research Project of Information Security Laboratory for National Defense Research and Experiment (2018XXAQ09)
  • 摘要: 针对高斯混合概率假设密度(GM-PHD)滤波器在目标速度未知或不准确时,目标状态估计性能较差,该文提出一种基于GM-PHD的运动参数估计组合平滑滤波算法。该算法通过目标状态提取速度信息,经过中值平滑和线性平滑组合处理提升速度估计准确性,然后将速度反馈给GM-PHD滤波器的状态转移方程,提高状态预测精度。仿真结果表明,目标速度未知或不准确时,所提算法能够明显改善GM-PHD滤波器状态估计性能。
  • 图  1  基于GM-PHD滤波器的运动参数估计组合平滑算法示意图

    图  2  目标跟踪图

    图  3  目标的速度估计

    图  4  组合平滑中间过程对比图

    图  5  OSPA距离

    图  6  目标估计个数

    表  1  基于GM-PHD滤波器运动参数估计组合平滑算法

     初始化$\tilde {\boldsymbol{v}} = \left[ {0,0,0,0} \right]$,$\Delta \tilde {\boldsymbol{v}} = \left[ {0,0,0,0} \right]$;
     步骤1 由$\left\{ {w_{k - 1}^{\left( i \right)},{\boldsymbol{m}}_{k - 1}^{\left( i \right)},{\boldsymbol{p}}_{k - 1}^{\left( i \right)}} \right\}$进行GM-PHD滤波得到
         $\left\{ {w_k^{\left( i \right)},{\boldsymbol{m}}_k^{\left( i \right)},{\boldsymbol{p}}_k^{\left( i \right)}} \right\}$;
     步骤2 从${\boldsymbol{m}}_{k - 1}^{\left( i \right)}$及${\boldsymbol{m}}_k^{\left( i \right)}$中获取$\left[ {x_{k - 1}^{\left( i \right)},y_{k - 1}^{\left( i \right)},z_{k - 1}^{\left( i \right)}} \right]$及
         $\left[ {x_k^{\left( i \right)},y_k^{\left( i \right)},z_k^{\left( i \right)}} \right]$;
     步骤3 速度初步获取:根据式(14)~式(16)得到$\tilde{\dot{x}}_{k}^{\left( i \right)},\tilde{\dot{y}}_{k}^{\left( i \right)},\tilde{\dot{z}}_{k}^{\left( i \right)}$
         后,送入组合平滑滤波器;
     步骤4 组合平滑处理:获得中值输出${{\boldsymbol{l}}_v}\left( k \right)$,再根据式(17)获得
         $\bar {\boldsymbol{v}}_k^{\left( i \right)}$;
     步骤5 误差反馈:根据式(18)计算差值$\Delta \tilde {\boldsymbol{v}}_k^{\left( i \right)}$,经过中值滤波输
         出${{\boldsymbol{l}}_{\Delta v}}\left( k \right)$,进行线性平滑输出$\Delta \bar {\boldsymbol{v}}_k^{\left( i \right)}$;
     步骤6 根据式(19)计算平滑滤波器的输出$\hat {\boldsymbol{v}}_k^{\left( i \right)}$;
     步骤7 根据式(20)和式(21)更新$\tilde {\boldsymbol{m}}_k^{\left( i \right)}$和$\left\{ {w_k^{\left( i \right)},\tilde {\boldsymbol{m}}_k^{\left( i \right)},{\boldsymbol{p}}_k^{\left( i \right)}} \right\}$;
     步骤8 下一时刻,重复步骤2~8。
    下载: 导出CSV

    表  2  实验参数设置

    仿真参数
    迭代时间间隔${{\mathit{\Delta}} _k}\left( s \right)$0.1
    目标新生概率${p_{b,k}}$0.1
    目标检测概率${p_{D,k}}$0.98
    目标存活概率${p_{S,k}}$0.99
    剪枝阈值$T$4
    合并阈值$U$0.5
    最大高斯分量数目${J_{\rm{max}}}$100
    蒙特卡罗次数100
    杂波数$lc$20
    过程噪声协方差${{\boldsymbol{Q}}_k}$$1{0^{ - 2}}{{\boldsymbol{I}}_6}$
    下载: 导出CSV

    表  3  不同过程噪声下算法的平均OSPA距离

    过程噪声(q)0.0050.010.0500.1000.500
    速度未知GM-PHD15.050214.432315.155715.150416.8850
    (平滑前)本文算法11.02437.09804.80905.04357.9587
    (无差值补偿)本文算法10.96657.19314.99645.03357.8285
    (组合平滑)本文算法10.70546.99344.78734.98727.5573
    速度已知GM-PHD10.99287.24495.05654.93007.9385
    下载: 导出CSV
  • [1] MA Tianli, ZHANG Qi, CHEN Chaobo, et al. Tracking of maneuvering star-convex extended target using modified adaptive extended Kalman Filter[J]. IEEE Access, 2020, 8: 214030–214038. doi: 10.1109/ACCESS.2020.3029804
    [2] XU Weijun. Adaptive probability hypothesis density filter for multi-target tracking with unknown measurement noise statistics[J]. Measurement and Control, 2021, 54(3/4): 279–291.
    [3] TIMOSHENKO A V, BABKIN Y V, SILANTYEV A B, et al. Detection and estimation of parameters of a random process set in multi-Scanning radar observation based on the "track-before-detect" methods[C]. 2021 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 2021: 1–5.
    [4] 杨丹, 姬红兵, 张永权. 未知杂波条件下样本集校正的势估计概率假设密度滤波算法[J]. 电子与信息学报, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666

    YANG Dan, JI Hongbing, and ZHANG Yongquan. A cardinalized probability hypothesis density filter with unknown clutter estimation using corrected sample set[J]. Journal of Electronics &Information Technology, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666
    [5] ZHAO Shunyi, HUANG Biao, and LIU Fei. Linear optimal unbiased filter for time-variant systems without apriori information on initial conditions[J]. IEEE Transactions on Automatic Control, 2017, 62(2): 882–887. doi: 10.1109/TAC.2016.2557999
    [6] TIAN Mingming, LIAO Guisheng, ZHU Shengqi, et al. A novel method for high-speed maneuvering target detection and motion parameters estimation[J]. Multidimensional Systems and Signal Processing, 2020, 31(4): 1625–1647. doi: 10.1007/s11045-020-00724-1
    [7] 梁勇, 张友安, 刘京茂. 一种针对速度变化规律未知的导弹时间和角度控制方法[J]. 导弹与航天运载技术, 2019(6): 79–82. doi: 10.7654/j.issn.1004-7182.20190615

    LIANG Yong, ZHANG Youan, and LIU Jingmao. Impact time and impact angle control for missile with unknown velocity variation[J]. Missiles and Space Vehicles, 2019(6): 79–82. doi: 10.7654/j.issn.1004-7182.20190615
    [8] 方卫红, 刘丽川, 杨继平, 等. 非迭代的波速未知声发射定位算法[J]. 后勤工程学院学报, 2016, 32(6): 1–7.

    FANG Weihong, LIU Lichuan, YANG Jiping, et al. A non-iterative AE source localization algorithm with unknown velocity[J]. Journal of Logistical Engineering University, 2016, 32(6): 1–7.
    [9] 刘哲, 卫军胡, 赵军, 等. 利用角度测量估计机动目标运动参数的方法[J]. 西安交通大学学报, 2009, 43(6): 67–71. doi: 10.3321/j.issn:0253-987X.2009.06.015

    LIU Zhe, WEI Junhu, ZHAO Jun, et al. A new parameter estimation method for flying target using bearing measurement[J]. Journal of Xian Jiaotong University, 2009, 43(6): 67–71. doi: 10.3321/j.issn:0253-987X.2009.06.015
    [10] ZHANG Shuang, WANG Jun, ZHANG Xianchun, et al. Parameter adaptive tracking method for hypersonic vehicle with variable slip frequency model[C]. 2020 IEEE International Conference on Networking, Sensing and Control(ICNSC), Nanjing, China, 2020: 1–6.
    [11] VO B N and MA W K. The gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190
    [12] 刘江义, 王春平. 基于双马尔科夫链的势概率假设密度滤波[J]. 电子与信息学报, 2019, 41(2): 492–497. doi: 10.11999/JEIT180352

    LIU Jiangyi and WANG Chunping. Cardinalized probability hypothesis density filter based on pairwise Markov chains[J]. Journal of Electronics &Information Technology, 2019, 41(2): 492–497. doi: 10.11999/JEIT180352
    [13] 朱友清, 周石琳, 高贵. 结合聚类的GM-PHD滤波器辐射源群目标跟踪[J]. 系统工程与电子技术, 2015, 37(9): 1967–1973. doi: 10.3969/j.issn.1001-506X.2015.09.03

    ZHU Youqing, ZHOU Shilin, and GAO Gui. Emitter group targets tracking using GM-PHD filter combined with clustering[J]. Systems Engineering and Electronics, 2015, 37(9): 1967–1973. doi: 10.3969/j.issn.1001-506X.2015.09.03
    [14] 罗纳德·马勒, 范红旗, 卢大威, 蔡飞, 译. 多源多目标统计信息融合进展[M]. 北京: 国防工业出版社, 2017: 2–22, 70–92.

    MAHLER R P S, FAN Hongqi, LU Dawei, and CAI Fei, translation. Advances in Statistical Multisource-Multitarget Information Fusion[M]. Beijing: National Defense Industry Press, 2017: 2–22, 70–92.
    [15] ZHANG Huanqing and GAO Li. An improved merging method for Gaussian mixture probability hypothesis density filter[J]. Optik, 2020, 207: 164282. doi: 10.1016/j.ijleo.2020.164282
    [16] 张雪英. 数字语音处理及MATLAB仿真[M]. 2版. 北京: 电子工业出版社, 2016: 54–56.

    ZHANG Xueying. Digital Speech Processing and MATLAB Simulation[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2016: 54–56.
    [17] WANG Yanhui, ZHANG Hongbin, and LI Yang. Iterated posterior linearization filters and smoothers with cross-correlated noises[J]. ISA Transactions, 2020, 100: 264–274. doi: 10.1016/j.isatra.2020.01.008
    [18] SURENDRAN M, NATARAJAN S, BORDAS S P A, et al. Linear smoothed extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2017, 112(12): 1733–1749. doi: 10.1002/nme.5579
    [19] XIA Haiying, XIAO Yufang, SONG Shuxiang, et al. Quantum circuit design of approximate median filtering with noise tolerance threshold[J]. Quantum Information Processing, 2020, 19(6): 183. doi: 10.1007/s11128-020-02678-6
    [20] EVERS C and NAYLOR P A. Optimized self-localization for SLAM in dynamic scenes using probability hypothesis density filters[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 863–878. doi: 10.1109/TSP.2017.2775590
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  907
  • HTML全文浏览量:  527
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 修回日期:  2021-09-09
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回