高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进CycleGAN的浑浊水体图像增强算法研究

李宝奇 黄海宁 刘纪元 刘正君 韦琳哲

李宝奇, 黄海宁, 刘纪元, 刘正君, 韦琳哲. 基于改进CycleGAN的浑浊水体图像增强算法研究[J]. 电子与信息学报, 2022, 44(7): 2504-2511. doi: 10.11999/JEIT210400
引用本文: 李宝奇, 黄海宁, 刘纪元, 刘正君, 韦琳哲. 基于改进CycleGAN的浑浊水体图像增强算法研究[J]. 电子与信息学报, 2022, 44(7): 2504-2511. doi: 10.11999/JEIT210400
LI Baoqi, HUANG Haining, LIU Jiyuan, LIU Zhengjun, WEI Linzhe. Turbid Water Image Enhancement Algorithm Based on Improved CycleGAN[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2504-2511. doi: 10.11999/JEIT210400
Citation: LI Baoqi, HUANG Haining, LIU Jiyuan, LIU Zhengjun, WEI Linzhe. Turbid Water Image Enhancement Algorithm Based on Improved CycleGAN[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2504-2511. doi: 10.11999/JEIT210400

基于改进CycleGAN的浑浊水体图像增强算法研究

doi: 10.11999/JEIT210400
基金项目: 国家自然科学基金(11904386),国家基础科研计划重大项目(JCKY2016206A003), 中国科学院青年创新促进会(2019023)
详细信息
    作者简介:

    李宝奇:男,1985年生,特别研究助理,研究方向为水声信号处理、目标检测、识别和跟踪以及深度学习理论等

    黄海宁:男,1969年生,研究员,研究方向为水声信号与信息处理、目标探测、水声通信与网络等

    刘纪元:男,1963年生,研究员,研究方向为水声信号处理、数字信号处理、水声成像与图像处理等

    刘正君:女,1982年生,助理研究员,研究方向为水声信号处理等

    韦琳哲:男,1991年生,助理研究员,研究方向为水声信号处理等

    通讯作者:

    黄海宁 hhn@mail.ioa.ac.cn

  • 中图分类号: TP391

Turbid Water Image Enhancement Algorithm Based on Improved CycleGAN

Funds: The National Natural Science Foundation of China (11904386), State Administration of Science, Technology and Industry for National Defence (JCKY2016206A003), Youth Innovation Promotion Association of Chinese Academy of Sciences (2019023)
  • 摘要: 针对循环生成对抗网络(Cycle Generative Adversarial Networks, CycleGAN)在浑浊水体图像增强中存在质量差和速度慢的问题,该文提出一种可扩展、可选择和轻量化的特征提取单元BSDK (Bottleneck Selective Dilated Kernel),并利用BSDK设计了一个新的生成器网络BSDKNet。与此同时,提出一种多尺度损失函数MLF(Multi-scale Loss Function)。在自建的浑浊水体图像增强数据集TC(Turbid and Clear)上,该文BM-CycleGAN比原始CycleGAN的精度提升3.27%,生成器网络参数降低4.15MB,运算时间减少0.107s。实验结果表明BM-CycleGAN适合浑浊水体图像增强任务。
  • 图  1  BM-CycleGAN网络结构

    图  2  BSDK特征提取单元

    图  3  生成器网络BSDKNet结构

    图  4  浑浊水体增强效果

    表  1  浑浊水体图像增强算法性能比较

    分类准确率(%)参数大小(MB)运算时间(s)
    CycleGAN95.1010.970.127
    SS-CycleGAN95.9210.970.127
    BSK-CycleGAN96.7318.210.054
    BM-CycleGAN98.376.820.020
    下载: 导出CSV

    表  2  BSDKNet生成器网络和MLF损失函数对BM-CycleGAN性能的影响

    BSDKNetMLF分类准确率(%)参数大小(MB)运算时间(s)
    CycleGAN95.1010.970.127
    M-CycleGAN
    B-CycleGAN
    BM-CycleGAN
    96.0910.970.127
    97.276.820.020
    98.376.820.020
    下载: 导出CSV

    表  3  不同权重系数(1–9)MLF对BM-CycleGAN性能的影响

    123456789
    分类准确率(%)95.1095.5196.7397.1497.5598.3797.9697.1496.33
    下载: 导出CSV

    表  4  不同多尺度系数(1,2,4,8)条件下的BSDKNet对BM-CycleGAN性能的影响

    1248
    分类准确率(%)95.1097.9698.3798.78
    参数大小(MB)6.826.826.826.82
    运算时间(s)0.0060.0160.0210.030
    下载: 导出CSV
  • [1] HMUE P M and PUMRIN S. Image enhancement and quality assessment methods in turbid water: A review article[C]. 2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), Bangkok, Thailand, 2019: 59–63.
    [2] HITAM M S, AWALLUDIN E A, YUSSOF W N J H W, et al. Mixture contrast limited adaptive histogram equalization for underwater image enhancement[C]. 2013 International Conference on Computer Applications Technology (ICCAT), Sousse, Tunisia, 2013: 1–5.
    [3] GHANI A S A and ISA N A M. Enhancement of low quality underwater image through integrated global and local contrast correction[J]. Applied Soft Computing, 2015, 37: 332–344. doi: 10.1016/j.asoc.2015.08.033
    [4] LI Chongyi, GUO Jichang, GUO Chunle, et al. A hybrid method for underwater image correction[J]. Pattern Recognition Letters, 2017, 94: 62–67. doi: 10.1016/j.patrec.2017.05.023
    [5] DENG Xiangyu, WANG Huigang, and LIU Xing. Underwater image enhancement based on removing light source color and Dehazing[J]. IEEE Access, 2019, 7: 114297–114309. doi: 10.1109/ACCESS.2019.2936029
    [6] LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [7] KWOK R. Deep learning powers a motion-tracking revolution[J]. Nature, 2019, 574(7776): 137–138. doi: 10.1038/d41586-019-02942-5
    [8] WANG Shiqiang. Efficient deep learning[J]. Nature Computational Science, 2021, 1(3): 181–182. doi: 10.1038/s43588-021-00042-x
    [9] KUANG Wenhuan, YUAN Congcong, and ZHANG Jie. Real-time determination of earthquake focal mechanism via deep learning[J]. Nature Communications, 2021, 12(1): 1432. doi: 10.1038/s41467-021-21670-x
    [10] YANG X S. Data Mining and Deep Learning[M]. YANG X S. Nature-Inspired Optimization Algorithms (Second Edition). London : Academic Press, 2021: 239–258.
    [11] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [12] RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]. 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016.
    [13] ARJOVSKY M, CHINTALA S, and BOTTOU L. Wasserstein GAN[J]. arXiv Preprint arXiv: 1701.07875, 2017.
    [14] CHEN Xi, DUAN Yan, HOUTHOOFT R, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[C]. Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 2016: 2172−2180.
    [15] XU Qiantong, HUANG Gao, YUAN Yang, et al. An empirical study on evaluation metrics of generative adversarial networks[J]. arXiv preprint arXiv: 1806.07755, 2018.
    [16] ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image−to−image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5967–5976.
    [17] ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2242–2251.
    [18] FABBRI C, ISLAM M J, and SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 2018: 7159–7165.
    [19] XIE Saining, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5987–5995.
    [20] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.
    [21] LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 510–519.
    [22] HUANG Xuejun, WEN Liwu, and DING Jinshan. SAR and optical image registration method based on improved CycleGAN[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 2019: 1–6.
    [23] 李宝奇, 贺昱曜, 强伟, 等. 基于并行附加特征提取网络的SSD地面小目标检测模型[J]. 电子学报, 2020, 48(1): 84–91. doi: 10.3969/j.issn.0372-2112.2020.01.010

    LI Baoqi, HE Yuyao, QIANG Wei, et al. SSD with parallel additional feature extraction network for ground small target detection[J]. Acta Electronica Sinica, 2020, 48(1): 84–91. doi: 10.3969/j.issn.0372-2112.2020.01.010
    [24] HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv Preprint arXiv: 1704.04861, 2017.
    [25] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
    [26] QIN Yanjun, LUO Haiyong, ZHAO Fang, et al. NDGCN: Network in network, dilate convolution and graph convolutional networks based transportation mode recognition[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2138–2152. doi: 10.1109/TVT.2021.3060761
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1097
  • HTML全文浏览量:  469
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 修回日期:  2022-03-01
  • 录用日期:  2022-01-22
  • 网络出版日期:  2022-03-10
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回