Interference Suppression Technology Based on Singular Value Decomposition of Periodic Truncated Data Matrix
-
摘要: 针对现有适用于单天线接收机的干扰抑制技术难以为周期调频(PFM)干扰和卫星导航信号提供足够分离度,导致消除干扰成分时卫星导航信号损伤较大的问题,该文提出一种基于周期截断数据矩阵奇异值分解的干扰抑制方法。利用调频干扰信号的周期性把分散在较大带宽的能量集中到重排数据中几个甚至单个频点;进而采用奇异值分解(SVD)将干扰与期望信号映射进不同的投影子空间以消除干扰成分。仿真结果表明该方法可以降低在剔除干扰时卫星导航信号损失,提升卫星导航接收机对抗宽带周期调频干扰的能力。Abstract: The separation between the Periodic Frequency Modulation (PFM) interference and satellite navigation signal is not enough in the traditional transform domain, which causes severe satellite navigation signal degradation is suppressing interference. To solve this problem, a data rearrangement method based on period truncation is proposed. Using the periodicity of the PFM interfering signal, the energy scattered in a larger bandwidth is concentrated to a single frequency point in the rearranged data. Then, Singular Value Decomposition (SVD) is adopted to map the interference and the desired signal into different projection subspaces to eliminate the interference components. The simulation results show that the proposed method can reduce the overlap degree of the PFM interference and satellite navigation signals, and reduce the damage of satellite navigation signals.
-
表 1 各干扰场景干扰参数
干扰场景 调频率(GHz/s) 扫频周期(ms) 带宽(MHz) 起始频率,终止频率(MHz) 单线性调频干扰场景 10 0.2 2 0.1,2.1 双线性调频干扰场景1 10;–2 0.2;0.4 2;0.8 0.1,2.1;2,1.2 双线性调频干扰场景2 10;–2 0.2;0.32 2;0.64 0.1,2.1;2,1.36 表 2 单分量干扰场景与双分量干扰场景1性能变化对比
MSTFT WPCT FRFT 文献[11]方法(16个周期) 本文方法(16个周期) INR (dB) 30 45 30 45 30 45 30 45 30 45 ΔNMSE ↑0.3 ↑0.3 ↑0.4 ↑0.3 ↑0.2 ↑0.1 0 0 0 0 ΔSINR ↓2.7 ↓5.7 ↓9.8 ↓7.2 ↓1.8 ↓5.1 ↓1.8 ↓2.9 0 0 ΔAF ↓2.2 ↓1.8 ↓3.9 ↓2.2 ↓10.3 ↓1.6 ↓1.2 ↓0.8 ↓0.7 ↓0.7 表 3 双分量干扰场景1与双分量干扰场景2性能变化对比
MSTFT WPCT FRFT 文献[11]方法(16个周期) 本文方法(16个周期) INR(dB) 30 45 30 45 30 45 30 45 30 45 ΔNMSE 0 0 0 ↑0.1 0 ↑0.1 ↑0.1 ↑0.1 0 0 ΔSINR 0 ↓1.2 ↓1.1 ↓1.5 0 ↓1.5 ↓1.5 ↓2.5 ↓0.4 ↓5.4 ΔAF ↓1.1 0 ↓1.0 0 ↓1.3 ↓0.9 ↓2.0 ↓0.9 ↓0.6 ↓12.1 表 4 计算复杂度对比
方法 计算复杂度 单干扰场景 双干扰场景1 双干扰场景2 本文方法 $ 2{N_p}(4 + 6{\log _2}{N_p}){\text{ + }}{N_j}\left[ {\left\lceil {{N_I}/(MQ)} \right\rceil ({\text{3}}MQ + {M^3} + {\text{3}}{M^2}{\text{ - }}M + 2{Q^2} - Q + {\text{3}})} \right] $ 3.9×108 7.6×108 8.8×108 MSTFT $2K{N_I}/({N_t} - v){N_t}{\log_2}{N_t} + {N_I}$ 9.2×109 9.2×109 9.2×109 WPCT $8{N_I}{N_t}{\log_2}{N_t}({2^5} - 1) + {({N_I})^2} + {N_I}$ 9.0×1012 9.0×1012 9.0×1012 FRFT ${N_j}(r + 2{N_I}/{N_t})(6{N_t}{\log_2}{N_t} + 3{N_t}) + 2{N_I}$ 5.1×109 5.1×109 1.0×1010 文献[9] $2{N_I}{N_t}{\log_2}({N_t}) + {N_I} + {N_t}({N_t} - 2)$ 6.1×1010 – – 文献[11] $2{N_p}(4 + 6 {\log_2}{N_p}) + {N_j}[8{N_L}(1 + 2 {\log_2}{N_L}) + 8\left\lceil { {N_I}/{N_B} } \right\rceil {N_B} {\log_2}{N_B}]$ 9.9×107 9.9×107 1.9×108 -
[1] MORONG T, PURIČER P, and KOVÁŘ P. Study of the GNSS jamming in real environment[J]. International Journal of Electronics and Telecommunications, 2019, 65(1): 65–70. doi: 10.24425/ijet.2019.126284 [2] MEDINA D, LASS C, MARCOS E P, et al. On GNSS jamming threat from the maritime navigation perspective[C]. 2019 22th International Conference on Information Fusion (FUSION), Ottawa, Canada, 2019: 1–7. [3] GAO G X, SGAMMINI M, LU Mingquan, et al. Protecting GNSS receivers from jamming and interference[J]. Proceedings of the IEEE, 2016, 104(6): 1327–1338. doi: 10.1109/JPROC.2016.2525938 [4] MORALES-FERRE R, RICHTER P, FALLETTI E, et al. A survey on coping with intentional interference in satellite navigation for manned and unmanned aircraft[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 249–291. doi: 10.1109/COMST.2019.2949178 [5] GUPTA I J, WEISS I M, and MORRISON A W. Desired features of adaptive antenna arrays for GNSS receivers[J]. Proceedings of the IEEE, 2016, 104(6): 1195–1206. doi: 10.1109/JPROC.2016.2524416 [6] LI Xianghao, CHEN Feiqiang, LU Zukun, et al. Overview of anti-Jamming technology based on GNSS single-antenna receiver[C]. The 2020 3rd International Conference on Geoinformatics and Data Analysis, Marseille, France, 2020: 96–104. doi: 10.1145/3397056.3397077. [7] FALLETTI E, GAMBA M T, and PINI M. Design and analysis of activation strategies for adaptive notch filters to suppress GNSS jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3718–3734. doi: 10.1109/TAES.2020.2982301 [8] REZAEI M J, ABEDI M, and MOSAVI M R. New GPS anti-jamming system based on multiple short-time Fourier transform[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 807–815. doi: 10.1049/iet-rsn.2015.0417 [9] WANG Pai, CETIN E, DEMPSTER A G, et al. Improved characterization of GNSS jammers using short-term time-frequency Rényi entropy[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1918–1930. doi: 10.1109/taes.2018.2805195 [10] KIM S Y, KANG C H, and PARK C G. Multiple frequency tracking and mitigation based on RSPWVD and adaptive multiple linear Kalman notch filter[J]. International Journal of Control, Automation and Systems, 2020, 18(5): 1139–1149. doi: 10.1007/s12555-019-0123-4 [11] QI Liangang, WANG Yani, GUO Qiang, et al. Modulation period resampling technique against multiple PFM interferers for single antenna GNSS receivers[J]. IEEE Communications Letters, 2020, 24(10): 2309–2313. doi: 10.1109/lcomm.2020.3000478 [12] 姚铮. 陆明泉. 新一代卫星导航系统信号设计原理与实现技术[M]. 北京: 电子工业出版社, 2016: 22–55.YAO Zheng and LU Mingquan. Signal Design Principle and Implementation Technology of New Generation Satellite Navigation System[M]. Beijing: Publishing House of Electronics Industry, 2016: 22–55. [13] 李继根, 张新发. 矩阵分析与计算[M]. 武汉: 武汉大学出版社, 2013: 190–192.LI Jigen and ZHANG Xinfa. Matrix Analysis and Computation[M]. Wuhan: Wuhan University Press, 2013: 190–192. [14] 李振东, 谭维凤, 康成斌, 等. 直接序列扩频系统抗干扰能力研究[J]. 电子与信息学报, 2021, 43(1): 116–123. doi: 10.11999/JEIT191007LI Zhendong, TAN Weifeng, KANG Chengbin, et al. Research on anti-interference ability of direct sequence spread spectrum system[J]. Journal of Electronics &Information Technology, 2021, 43(1): 116–123. doi: 10.11999/JEIT191007 [15] KANJILAL P P and PALIT S. On multiple pattern extraction using singular value decomposition[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1536–1540. doi: 10.1109/78.388873 [16] MOSAVI M R, PASHAIAN M, REZAEI M J, et al. Jamming mitigation in global positioning system receivers using wavelet packet coefficients thresholding[J]. IET Signal Processing, 2015, 9(5): 457–464. doi: 10.1049/iet-spr.2014.0280 [17] HUANG Kewu, TAO Ran, WU Kui, et al. Study on interference suppression based on joint fractional Fourier domain and time domain[J]. Science China Technological Sciences, 2011, 54(10): 2674–2686. doi: 10.1007/s11431-011-4533-7