高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度卷积神经网络的无参考低照度图像增强

陈勇 陈东 刘焕淋 黄美永 汪波

陈勇, 陈东, 刘焕淋, 黄美永, 汪波. 基于深度卷积神经网络的无参考低照度图像增强[J]. 电子与信息学报, 2022, 44(6): 2166-2174. doi: 10.11999/JEIT210386
引用本文: 陈勇, 陈东, 刘焕淋, 黄美永, 汪波. 基于深度卷积神经网络的无参考低照度图像增强[J]. 电子与信息学报, 2022, 44(6): 2166-2174. doi: 10.11999/JEIT210386
CHEN Yong, CHEN Dong, LIU Huanlin, HUANG Meiyong, WANG Bo. Unreferenced Low-lighting Image Enhancement Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2166-2174. doi: 10.11999/JEIT210386
Citation: CHEN Yong, CHEN Dong, LIU Huanlin, HUANG Meiyong, WANG Bo. Unreferenced Low-lighting Image Enhancement Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2166-2174. doi: 10.11999/JEIT210386

基于深度卷积神经网络的无参考低照度图像增强

doi: 10.11999/JEIT210386
基金项目: 国家自然科学基金(51977021),重庆市技术创新与应用发展专项(cstc2019jscx-mbdX0004)
详细信息
    作者简介:

    陈勇:男,1963年生,教授,博士,研究方向为图像处理与模式识别

    陈东:男,1995年生,硕士,研究方向为图像处理

    刘焕淋:女,1970年生,教授,博士生导师,研究方向为信息处理

    黄美永:女,1997年生,硕士生,研究方向为图像处理

    汪波:男,1995年生,硕士生,研究方向为图像处理

    通讯作者:

    陈勇 chenyong@cqupt.edu.cn

  • 中图分类号: TN911.73; TP391.41

Unreferenced Low-lighting Image Enhancement Based on Deep Convolutional Neural Network

Funds: The National Natural Science Foundation of China (51977021), Chongqing Key Technology Innovation Project (cstc2019jscx-mbdX0004)
  • 摘要: 针对低照度图像增强算法在实现细节增强的同时对噪声抑制考虑的不足问题,该文提出一种基于深度卷积神经网络的无参考低照度图像增强方法。首先,基于Retinex理论从输入的低照度图像中提取照射分量和反射分量,并分别对二者进行优化,随后将优化后的照射分量和反射分量相乘得到增强后的图像;同时,将3D块匹配(BM3D)的去噪效果融合进反射分量的优化过程中;最后,采用无参考图像训练的方式,并配合改进后的趋势一致性损失对网络参数进行更新。实验结果表明,该文算法相较于现有的主流算法,可有效地提升低照度图像的对比度和亮度,同时保持图像的自然性。
  • 图  1  网络整体框架

    图  2  分解网络

    图  3  反射分量优化网络

    图  4  不同光照下图像同一位置的梯度变化趋势

    图  5  不同算法对于在合成的低照度图像的处理结果(1)

    图  6  不同算法对于在合成的低照度图像的处理结果(2)

    图  7  不同算法对于真实低照度图像的处理结果

    图  8  本文算法在测试集上的各项指标得分分布情况

    表  1  不同算法处理结果的客观评价指标得分

    评价指标Dong[15]SRIE[6]LIME[7]RetinexGAN[12]本文算法
    PSNR15.7032513.12215.906216.48216.41
    SSIM0.57120.50590.57480.44470.62
    NIQE8.92177.3248.318.51347.721
    下载: 导出CSV

    表  2  算法处理时间对比(s)

    图像大小Dong[15]SRIE[6]LIME[7]RetinexGAN[12]本文算法
    256×2562.2951.7610.1422.2972.056
    480×3204.9422.7070.1753.7013.875
    720×54012.2565.5590.2728.7668.986
    下载: 导出CSV

    表  3  不同算法在LOL数据集上的测试结果

    评价指标Dong[15]SRIE[6]LIME[7]RetinexGAN[12]本文算法
    PSNR16.12011.855116.92016.57416.863
    SSIM0.6930.4950.5040.4570.711
    下载: 导出CSV
  • [1] 张敏辉, 杨剑. 评价SAR图像去噪效果的无参考图像质量指标[J]. 重庆邮电大学学报:自然科学版, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014

    ZHANG Minhui and YANG Jian. A new referenceless image quality index to evaluate denoising performance of SAR images[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014
    [2] 徐弦秋, 刘宏清, 黎勇, 等. 基于RGB通道下模糊核估计的图像去模糊[J]. 重庆邮电大学学报:自然科学版, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009

    XU Xianqiu, LIU Hongqing, LI Yong, et al. Image deblurring with blur kernel estimation in RGB channels[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009
    [3] 张功国, 吴建, 易亿, 等. 基于集成卷积神经网络的交通标志识别[J]. 重庆邮电大学学报:自然科学版, 2019, 31(4): 571–577. doi: 10.3979/j.issn.1673-825X.2019.04.019

    ZHANG Gongguo, WU Jian, YI Yi, et al. Traffic sign recognition based on ensemble convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(4): 571–577. doi: 10.3979/j.issn.1673-825X.2019.04.019
    [4] LAND E H and MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1–11. doi: 10.1364/JOSA.61.000001
    [5] 胡正平, 刘博, 王成儒. 基于极大灰度频数抑制结合动态直方图均衡的图像增强算法[J]. 电子与信息学报, 2009, 31(6): 1327–1331. doi: 10.3724/SP.J.1146.2008.00580

    HU Zhengping, LIU Bo, and WANG Chengru. Image enhancement algorithm combines maximum gray frequency restrict with dynamic histogram equalization[J]. Journal of Electronics &Information Technology, 2009, 31(6): 1327–1331. doi: 10.3724/SP.J.1146.2008.00580
    [6] FU Xueyang, ZENG Delu, HUANG Yue, et al. A weighted variational model for simultaneous reflectance and illumination estimation[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2782–2790.
    [7] GUO Xiaojie, LI Yu, and LING Haibin. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982–993. doi: 10.1109/TIP.2016.2639450
    [8] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
    [9] LORE K G, AKINTAYO A, and SARKAR S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650–662. doi: 10.1016/j.patcog.2016.06.008
    [10] CHEN Chen, CHEN Qifeng, XU Jia, et al. Learning to see in the dark[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3291–3300.
    [11] WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep retinex decomposition for low-light enhancement[C]. British Machine Vision Conference 2018, Newcastle, UK, 2018.
    [12] MA Tian, GUO Ming, YU Zhenhua, et al. RetinexGAN: Unsupervised low-light enhancement with two-layer convolutional decomposition networks[J]. IEEE Access, 2021, 9: 56539–56550. doi: 10.1109/ACCESS.2021.3072331
    [13] GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1777–1786.
    [14] 陈勇, 詹帝, 刘焕淋. 基于物理模型与边界约束的低照度图像增强算法[J]. 电子与信息学报, 2017, 39(12): 2962–2969. doi: 10.11999/JEIT170267

    CHEN Yong, ZHAN Di, and LIU Huanlin. Enhancement algorithm for low-lighting images based on physical model and boundary constraint[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2962–2969. doi: 10.11999/JEIT170267
    [15] DONG Xuan, WANG Guan, PANG Yi, et al. Fast efficient algorithm for enhancement of low lighting video[C]. 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 2011: 1–6.
    [16] WANG Liqian, XIAO Liang, LIU Hongyi, et al. Variational Bayesian method for retinex[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3381–3396. doi: 10.1109/TIP.2014.2324813
    [17] REN Xutong, YANG Wenhan, CHENG Wenhuang, et al. LR3M: Robust low-light enhancement via low-rank regularized retinex model[J]. IEEE Transactions on Image Processing, 2020, 29: 5862–5876. doi: 10.1109/TIP.2020.2984098
    [18] WANG Yang, CAO Yang, ZHA Zhengjun, et al. Progressive retinex: Mutually reinforced illumination-noise perception network for low-light image enhancement[C]. The 27th ACM International Conference on Multimedia, Nice, France, 2019: 2015–2023.
    [19] ZHANG Yonghua, ZHANG Jiawan, and GUO Xiaojie. Kindling the darkness: A practical low-light image enhancer[C]. The 27th ACM International Conference on Multimedia, Nice, France, 2019: 1632–1640.
    [20] LV Feifan and LU Feng. Attention-guided low-light image enhancement[J]. arXiv: 1908.00682, 2019.
    [21] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/tip.2003.819861
    [22] MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  631
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2022-03-21
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回