Design and Experiment of a Quasi-Optical Mode Converter
-
摘要: 准光模式变换器是实现高功率回旋管高效输出的重要部件。该文针对140 GHz, TE28,8模回旋振荡管研制,开展以Denisov型辐射器和3个准光镜面构成的准光模式变换器设计与实验研究。利用标量衍射法优化辐射器辐射口径处的场分布,其与理想高斯场之间的矢量相关性为96.2%;基于几何光学和高斯波束匹配方法设计了聚焦镜面与波束整形镜面,采用3维全波分析软件Surf3D获得各个镜面上及输出窗处的场分布,对所设计的镜面系统进行了仿真验证,在输出窗处获得了高斯模式含量为96.67%的输出波束,整个模式变换器的功率转换效率为93.98%。以自行研制的TE28,8模激励器作为准光模式变换器的输入,通过对模式变换器转换性能仿真结果验证,在严格控制加工精度及装配和实验过程的基础上,完成了准光模式变换器转换性能的冷测实验。实验结果表明,设计和实验具有合理的一致性,可以作为准光模式变换器工程应用设计和验证手段。
-
关键词:
- 准光模式变换器 /
- Denisov型辐射器 /
- 高斯模式含量 /
- 冷测
Abstract: Quasi-optical mode converter is an important component to realize the high-efficiency output for a high-power gyrotron oscillator. In this paper, design and experiments of a quasi-optical mode converter, consisting of a Denisov-type launcher and three quasi-optical mirrors, are carried out for the development of 140 GHz/TE28,8 mode gyrotron oscillator. Based on scalar diffraction method, the field distribution at the radiation aperture of the Denisov-type launcher is optimized to make the vector correlation of the aperture field with the ideal Gaussian field reach 96.2%. Based on the geometric optics method and the Gaussian beam matching method, the focusing mirror and the beam shaping mirrors are designed. A 3D full-wave analysis software Surf3D is used to obtain the field distribution on each mirror surface and the output window, which shows that the output beam with Gaussian mode content of 96.67% is obtained at the output window. The total power conversion efficiency of the quasi-optical mode converter is 93.98%. The design and experiments of the quasi-optical mode converter are performed to use the output signal of the self-developed TE28,8 mode generator as its input one under the conditions of the simulated demonstration for its conversion characteristics and the strict control for machining precision as well as the process of the converter assemble and testing. The tested results indicate that the design is in good agreement with the experiment, which is helpful for engineering design and experimental demonstration of the quasi-optical mode converter development. -
表 1 镜面与输出窗在系统坐标系中的位置
镜面 中心位置(mm) 与z轴夹角(°) 镜面1 (59.5,0,212.7) 0 镜面2 (–60,0,268.6) 11.1 镜面3 (100,0,442.3) 23.7 输出窗 (–160,0,442.3) 0 -
[1] NUSINOVICH G S, THUMM M K A, and PETELIN M I. The gyrotron at 50: Historical overview[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(4): 325–381. doi: 10.1007/s10762-014-0050-7 [2] VLASOV S N and ORLOVA I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115–119. doi: 10.1007/BF01037072 [3] VLASOV S N. Transformation of a whispering gallery mode, propagating in a circular waveguide, into a beam of waves[J]. Radiofizika, 1972, 15(4): 14–17. [4] DENISOV G G, KUFTIN A N, MALYGIN V I, et al. 110 Ghz gyrotron with a built-in high-efficiency converter[J]. International Journal of Electronics, 1992, 72(5/6): 1079–1091. doi: 10.1080/00207219208925634 [5] DOANE J L. Propagation and mode coupling in corrugated and smooth-wall circular waveguides[J]. Infrared and Millimeter Waves, 1985, 13: 123–170. [6] JIN Jianbo, THUMM M, GANTENBEIN G, et al. A numerical synthesis method for hybrid-type high-power gyrotron launchers[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(3): 699–706. doi: 10.1109/TMTT.2016.2630060 [7] KIM S G, KIM D S, CHOE M S, et al. Cold testing of quasi-optical mode converters using a generator for non-rotating high-order gyrotron modes[J]. Review of Scientific Instruments, 2014, 85(10): 104709. doi: 10.1063/1.4898180 [8] JIN Jianbo, GANTENBEIN G, THUMM M, et al. A hybrid-type 170 GHz gyrotron launcher for the TE32, 9 mode[C]. 2015 IEEE International Vacuum Electronics Conference (IVEC), Beijing, China, 2015: 1–2. [9] MAREK A, JIN Jianbo, JELONNEK J, et al. Development of an advanced vector analysis code for simulation of electromagnetic fields in quasi-optical systems of high power gyrotrons[C]. 2017 Eighteenth International Vacuum Electronics Conference (IVEC), London, UK, 2017: 1–2. [10] JIN Jianbo, GANTENBEIN G, RUESS T, et al. Design of a quasi-optical mode converter for a dual-frequency coaxial-cavity gyrotron[C]. 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 2019: 1–2. [11] RUESS T, AVRAMIDIS K A, GANTENBEIN G, et al. Automated generation of high-order modes for tests of quasi-optical systems of gyrotrons for W7-X stellarator[C]. 2019 12th German Microwave Conference (GeMiC), Stuttgart, Germany, 2019: 226–228. doi: 10.23919/GEMIC.2019.8698142. [12] ALARIA M K, SINGH N, SINGH U, et al. Development of 170 GHz, 0.1 MW short pulse gyrotron[J]. Fusion Engineering and Design, 2019, 144: 87–92. doi: 10.1016/j.fusengdes.2019.04.073 [13] WANG Bin, HE Hong, LIU Yunlong, et al. Design of quasi-optical mode converter for 140 GHz gyrotron[J]. High Power Laser and Particle Beams, 2015, 27(11): 113002. doi: 10.11884/HPLPB201527.113002 [14] XU Wenjian, YU Xinhua, LI Simin, et al. The design of a new type of quasi-optical mode converter mirror system[C]. 2015 IEEE International Conference on Communication Problem-Solving (ICCP), Guilin, China, 2015: 419–421. doi: 10.1109/ICCPS.2015.7454191. [15] WANG Wei, SONG Tao, LIU Diwei, et al. Design of a high-efficiency quasi-optical mode converter for a 0.42 THz-TE17, 4 gyrotron[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(6): 840–846. doi: 10.3969/j.issn.1001-0548.2018.06.007 [16] XIA Dong, JIN Ming, and BAI Ming. Poynting vector method for reflector beam shaping[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 664–668. doi: 10.1109/lawp.2019.2900718 [17] ZHAO Guohui, XUE Qianzhong, WANG Yong, et al. Design of quasi-optical mode converter for 170-GHz TE32, 9-mode high-power gyrotron[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2582–2589. doi: 10.1109/tps.2019.2908503 [18] 边慧琦, 杜朝海, 潘石, 等. 太赫兹宽带Denisov型准光模式变换器的设计分析[J]. 红外与毫米波学报, 2020, 39(5): 567–575. doi: 10.11972/j.issn.1001-9014.2020.05.006BIAN Huiqi, DU Chaohai, PAN Shi, et al. Design and analysis of a broadband quasi-optical mode converter with a denisov launcher[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 567–575. doi: 10.11972/j.issn.1001-9014.2020.05.006 [19] 黄麒力, 孙迪敏, 马国武, 等. 双频回旋管内置准光模式变换器设计[J]. 强激光与粒子束, 2020, 32(5): 053001. doi: 10.11884/HPLPB202032.190446HUANG Qili, SUN Dimin, MA Guowu, et al. Design of quasi-optical mode converter for dual-frequency gyrotron[J]. High Power Laser and Particle Beams, 2020, 32(5): 053001. doi: 10.11884/HPLPB202032.190446 [20] WANG Lina, NIU Xinjian, LIU Yinghui, et al. High-order rotating mode generator using quasi-optical techniques[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3495–3500. doi: 10.1109/TPS.2020.3020953 [21] WANG Wei, SONG Tao, LIU Diwei, et al. Quasi-optical mode converter for a 0.42-THz TE26 mode pulsed gyrotron oscillator[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2406–2409. doi: 10.1109/tps.2016.2603161 [22] 赵国慧, 薛谦忠, 王勇, 等. W波段回旋管准光模式变换器的研究[J]. 电子与信息学报, 2018, 40(7): 1767–1773. doi: 10.11999/JEIT170998ZHAO Guohui, XUE Qianzhong, WANG Yong, et al. Investigation of quasi-optical mode converter for W band gyrotron[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1767–1773. doi: 10.11999/JEIT170998 [23] WANG Wei, ZHANG Ning, SONG Tao, et al. Quasi-optical mode converter for a 0.42 THz TE17, 4 gyrotron[C]. 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 2018: 1–2. [24] LIU Bentian, FENG Jinjun, ZHANG Yichi, et al. Study of 140GHz and 170GHz gyrotrons for fusion plasma ECRH[C]. 2019 International Vacuum Electronics Conference (IVEC), Busan, South Korea, 2019: 1–2. [25] 胡林林, 马国武, 孙迪敏, 等. 28 GHz/50 kW准光输出连续波回旋管[J]. 强激光与粒子束, 2019, 31(6): 060101. doi: 10.11884/HPLPB201931.190139HU Linlin, MA Guowu, SUN Dimin, et al. A 28 GHz/50 kW continuous wave gyrotron with quasi-optical output[J]. High Power Laser and Particle Beams, 2019, 31(6): 060101. doi: 10.11884/HPLPB201931.190139 [26] PAN Yuanyuan, WANG Lina, LIU Jianwei, et al. Design and experiments of 94 GHz Gyrotron for non-lethal biological effects of millimeter wave radiation[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 163–168. doi: 10.11972/j.issn.1001-9014.2020.02.005 [27] 杨晨, 郭炜, 李志贤, 等. 高阶体模准光模式激励器的设计与实验[J]. 红外与毫米波学报, 2021, 40(6): 768–777. doi: 10.11972/j.issn.1001-9014.2021.02.001YANG Chen, GUO Wei, LI Zhixian, et al. Design and experiments of a high-order body mode generator using quasi-optical technology[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 768–777. doi: 10.11972/j.issn.1001-9014.2021.02.001 [28] LI Zhixian, ZHANG Zhiqiang, JIAO Menglong, et al. Simulation and analysis of the TE28, 8 mode excitation in an open resonant cavity of gyrotron[C]. 2020 IEEE 21st International Conference on Vacuum Electronics (IVEC), Monterey, Spain, 2020: 413–414. [29] THUMM M, YANG X, ARNOLD A, et al. A high-efficiency quasi-optical mode converter for a 140-GHz 1-MW CW gyrotron[J]. IEEE Transactions on Electron Devices, 2005, 52(5): 818–824. doi: 10.1109/ted.2005.845791 [30] 金践波. 同轴腔回旋管准光学模式转换器[D]. [博士论文], 西南交通大学, 2006.JIN Jianbo. Quasi-optical mode converter for a coaxial cavity gyrotron[D]. [Ph. D. dissertation], Southwest Jiaotong University, 2006.