高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种准光模式变换器的设计和实验

杨晨 郭炜 李文奇 张志强 罗积润 朱敏

杨晨, 郭炜, 李文奇, 张志强, 罗积润, 朱敏. 一种准光模式变换器的设计和实验[J]. 电子与信息学报, 2022, 44(7): 2592-2601. doi: 10.11999/JEIT210347
引用本文: 杨晨, 郭炜, 李文奇, 张志强, 罗积润, 朱敏. 一种准光模式变换器的设计和实验[J]. 电子与信息学报, 2022, 44(7): 2592-2601. doi: 10.11999/JEIT210347
YANG Chen, GUO Wei, LI Wenqi, ZHANG Zhiqiang, LUO Jirun, ZHU Min. Design and Experiment of a Quasi-Optical Mode Converter[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2592-2601. doi: 10.11999/JEIT210347
Citation: YANG Chen, GUO Wei, LI Wenqi, ZHANG Zhiqiang, LUO Jirun, ZHU Min. Design and Experiment of a Quasi-Optical Mode Converter[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2592-2601. doi: 10.11999/JEIT210347

一种准光模式变换器的设计和实验

doi: 10.11999/JEIT210347
基金项目: 国家重点研发计划(2017YFE0300202, 2017YFE0300200)
详细信息
    作者简介:

    杨晨:女,1992年生,博士生,研究方向为物理电子学、高功率回旋管

    郭炜:男,1977年生,高级工程师,主要研究方向为高功率电子器件的设计、实验和测试

    李文奇:男,1994年生,硕士,研究方向为高功率回旋管

    张志强:男,1975年生,正高级工程师,主要研究方向为高功率微波源、微波毫米波器件

    罗积润:男,1957年生,研究员,主要研究方向为大功率速调管、行波管和回旋管放大器的研制、微波毫米波材料的加工和微波能量的应用

    朱敏:女,1976年生,研究员,主要研究方向为高功率微波器件

    通讯作者:

    杨晨 yangchen315@mails.ucas.ac.cn

  • 中图分类号: TN129; TN814

Design and Experiment of a Quasi-Optical Mode Converter

Funds: The National Key R&D Program of China (2017YFE0300202, 2017YFE0300200)
  • 摘要: 准光模式变换器是实现高功率回旋管高效输出的重要部件。该文针对140 GHz, TE28,8模回旋振荡管研制,开展以Denisov型辐射器和3个准光镜面构成的准光模式变换器设计与实验研究。利用标量衍射法优化辐射器辐射口径处的场分布,其与理想高斯场之间的矢量相关性为96.2%;基于几何光学和高斯波束匹配方法设计了聚焦镜面与波束整形镜面,采用3维全波分析软件Surf3D获得各个镜面上及输出窗处的场分布,对所设计的镜面系统进行了仿真验证,在输出窗处获得了高斯模式含量为96.67%的输出波束,整个模式变换器的功率转换效率为93.98%。以自行研制的TE28,8模激励器作为准光模式变换器的输入,通过对模式变换器转换性能仿真结果验证,在严格控制加工精度及装配和实验过程的基础上,完成了准光模式变换器转换性能的冷测实验。实验结果表明,设计和实验具有合理的一致性,可以作为准光模式变换器工程应用设计和验证手段。
  • 图  1  辐射器内壁上扰动的幅度和长度

    图  2  Denisov辐射器内壁面扰动分布

    图  3  辐射器壁面场归一化幅度分布

    图  4  辐射器口径场分布

    图  5  Denisov辐射器辐射场分布(幅度以dB表示)

    图  6  波束整形镜面的设计过程示意图

    图  7  镜面系统中各个镜面的大小和轮廓

    图  8  准光模式变换器系统图

    图  9  镜面系统中各个镜面与输出窗上的场分布在Y-Z方向的投影(幅度范围为–30~0 dB)

    图  10  波束在准光模式变换器中的传播路径

    图  11  以激励器输出作为输入时,准光模式变换器的仿真结果(幅度范围为–30~0 dB)

    图  12  完成装配的准光模式变换器

    图  13  准光模式变换器测试系统框图

    图  14  准光模式变换器测试现场

    图  15  沿波束传播路径不同横截面处的场幅度及相位分布的测量结果

    图  16  理想高阶模式与激励场输入下,输出窗处(离轴160 mm)的场分布仿真结果

    表  1  镜面与输出窗在系统坐标系中的位置

    镜面中心位置(mm)z轴夹角(°)
    镜面1(59.5,0,212.7)0
    镜面2(–60,0,268.6)11.1
    镜面3(100,0,442.3)23.7
    输出窗(–160,0,442.3)0
    下载: 导出CSV
  • [1] NUSINOVICH G S, THUMM M K A, and PETELIN M I. The gyrotron at 50: Historical overview[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(4): 325–381. doi: 10.1007/s10762-014-0050-7
    [2] VLASOV S N and ORLOVA I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115–119. doi: 10.1007/BF01037072
    [3] VLASOV S N. Transformation of a whispering gallery mode, propagating in a circular waveguide, into a beam of waves[J]. Radiofizika, 1972, 15(4): 14–17.
    [4] DENISOV G G, KUFTIN A N, MALYGIN V I, et al. 110 Ghz gyrotron with a built-in high-efficiency converter[J]. International Journal of Electronics, 1992, 72(5/6): 1079–1091. doi: 10.1080/00207219208925634
    [5] DOANE J L. Propagation and mode coupling in corrugated and smooth-wall circular waveguides[J]. Infrared and Millimeter Waves, 1985, 13: 123–170.
    [6] JIN Jianbo, THUMM M, GANTENBEIN G, et al. A numerical synthesis method for hybrid-type high-power gyrotron launchers[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(3): 699–706. doi: 10.1109/TMTT.2016.2630060
    [7] KIM S G, KIM D S, CHOE M S, et al. Cold testing of quasi-optical mode converters using a generator for non-rotating high-order gyrotron modes[J]. Review of Scientific Instruments, 2014, 85(10): 104709. doi: 10.1063/1.4898180
    [8] JIN Jianbo, GANTENBEIN G, THUMM M, et al. A hybrid-type 170 GHz gyrotron launcher for the TE32, 9 mode[C]. 2015 IEEE International Vacuum Electronics Conference (IVEC), Beijing, China, 2015: 1–2.
    [9] MAREK A, JIN Jianbo, JELONNEK J, et al. Development of an advanced vector analysis code for simulation of electromagnetic fields in quasi-optical systems of high power gyrotrons[C]. 2017 Eighteenth International Vacuum Electronics Conference (IVEC), London, UK, 2017: 1–2.
    [10] JIN Jianbo, GANTENBEIN G, RUESS T, et al. Design of a quasi-optical mode converter for a dual-frequency coaxial-cavity gyrotron[C]. 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 2019: 1–2.
    [11] RUESS T, AVRAMIDIS K A, GANTENBEIN G, et al. Automated generation of high-order modes for tests of quasi-optical systems of gyrotrons for W7-X stellarator[C]. 2019 12th German Microwave Conference (GeMiC), Stuttgart, Germany, 2019: 226–228. doi: 10.23919/GEMIC.2019.8698142.
    [12] ALARIA M K, SINGH N, SINGH U, et al. Development of 170 GHz, 0.1 MW short pulse gyrotron[J]. Fusion Engineering and Design, 2019, 144: 87–92. doi: 10.1016/j.fusengdes.2019.04.073
    [13] WANG Bin, HE Hong, LIU Yunlong, et al. Design of quasi-optical mode converter for 140 GHz gyrotron[J]. High Power Laser and Particle Beams, 2015, 27(11): 113002. doi: 10.11884/HPLPB201527.113002
    [14] XU Wenjian, YU Xinhua, LI Simin, et al. The design of a new type of quasi-optical mode converter mirror system[C]. 2015 IEEE International Conference on Communication Problem-Solving (ICCP), Guilin, China, 2015: 419–421. doi: 10.1109/ICCPS.2015.7454191.
    [15] WANG Wei, SONG Tao, LIU Diwei, et al. Design of a high-efficiency quasi-optical mode converter for a 0.42 THz-TE17, 4 gyrotron[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(6): 840–846. doi: 10.3969/j.issn.1001-0548.2018.06.007
    [16] XIA Dong, JIN Ming, and BAI Ming. Poynting vector method for reflector beam shaping[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 664–668. doi: 10.1109/lawp.2019.2900718
    [17] ZHAO Guohui, XUE Qianzhong, WANG Yong, et al. Design of quasi-optical mode converter for 170-GHz TE32, 9-mode high-power gyrotron[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2582–2589. doi: 10.1109/tps.2019.2908503
    [18] 边慧琦, 杜朝海, 潘石, 等. 太赫兹宽带Denisov型准光模式变换器的设计分析[J]. 红外与毫米波学报, 2020, 39(5): 567–575. doi: 10.11972/j.issn.1001-9014.2020.05.006

    BIAN Huiqi, DU Chaohai, PAN Shi, et al. Design and analysis of a broadband quasi-optical mode converter with a denisov launcher[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 567–575. doi: 10.11972/j.issn.1001-9014.2020.05.006
    [19] 黄麒力, 孙迪敏, 马国武, 等. 双频回旋管内置准光模式变换器设计[J]. 强激光与粒子束, 2020, 32(5): 053001. doi: 10.11884/HPLPB202032.190446

    HUANG Qili, SUN Dimin, MA Guowu, et al. Design of quasi-optical mode converter for dual-frequency gyrotron[J]. High Power Laser and Particle Beams, 2020, 32(5): 053001. doi: 10.11884/HPLPB202032.190446
    [20] WANG Lina, NIU Xinjian, LIU Yinghui, et al. High-order rotating mode generator using quasi-optical techniques[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3495–3500. doi: 10.1109/TPS.2020.3020953
    [21] WANG Wei, SONG Tao, LIU Diwei, et al. Quasi-optical mode converter for a 0.42-THz TE26 mode pulsed gyrotron oscillator[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2406–2409. doi: 10.1109/tps.2016.2603161
    [22] 赵国慧, 薛谦忠, 王勇, 等. W波段回旋管准光模式变换器的研究[J]. 电子与信息学报, 2018, 40(7): 1767–1773. doi: 10.11999/JEIT170998

    ZHAO Guohui, XUE Qianzhong, WANG Yong, et al. Investigation of quasi-optical mode converter for W band gyrotron[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1767–1773. doi: 10.11999/JEIT170998
    [23] WANG Wei, ZHANG Ning, SONG Tao, et al. Quasi-optical mode converter for a 0.42 THz TE17, 4 gyrotron[C]. 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 2018: 1–2.
    [24] LIU Bentian, FENG Jinjun, ZHANG Yichi, et al. Study of 140GHz and 170GHz gyrotrons for fusion plasma ECRH[C]. 2019 International Vacuum Electronics Conference (IVEC), Busan, South Korea, 2019: 1–2.
    [25] 胡林林, 马国武, 孙迪敏, 等. 28 GHz/50 kW准光输出连续波回旋管[J]. 强激光与粒子束, 2019, 31(6): 060101. doi: 10.11884/HPLPB201931.190139

    HU Linlin, MA Guowu, SUN Dimin, et al. A 28 GHz/50 kW continuous wave gyrotron with quasi-optical output[J]. High Power Laser and Particle Beams, 2019, 31(6): 060101. doi: 10.11884/HPLPB201931.190139
    [26] PAN Yuanyuan, WANG Lina, LIU Jianwei, et al. Design and experiments of 94 GHz Gyrotron for non-lethal biological effects of millimeter wave radiation[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 163–168. doi: 10.11972/j.issn.1001-9014.2020.02.005
    [27] 杨晨, 郭炜, 李志贤, 等. 高阶体模准光模式激励器的设计与实验[J]. 红外与毫米波学报, 2021, 40(6): 768–777. doi: 10.11972/j.issn.1001-9014.2021.02.001

    YANG Chen, GUO Wei, LI Zhixian, et al. Design and experiments of a high-order body mode generator using quasi-optical technology[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 768–777. doi: 10.11972/j.issn.1001-9014.2021.02.001
    [28] LI Zhixian, ZHANG Zhiqiang, JIAO Menglong, et al. Simulation and analysis of the TE28, 8 mode excitation in an open resonant cavity of gyrotron[C]. 2020 IEEE 21st International Conference on Vacuum Electronics (IVEC), Monterey, Spain, 2020: 413–414.
    [29] THUMM M, YANG X, ARNOLD A, et al. A high-efficiency quasi-optical mode converter for a 140-GHz 1-MW CW gyrotron[J]. IEEE Transactions on Electron Devices, 2005, 52(5): 818–824. doi: 10.1109/ted.2005.845791
    [30] 金践波. 同轴腔回旋管准光学模式转换器[D]. [博士论文], 西南交通大学, 2006.

    JIN Jianbo. Quasi-optical mode converter for a coaxial cavity gyrotron[D]. [Ph. D. dissertation], Southwest Jiaotong University, 2006.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  868
  • HTML全文浏览量:  488
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-08-26
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回