高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代近端投影的二维欠采样合成孔径雷达成像

李家强 郭桂祥 陈金立 朱艳萍

李家强, 郭桂祥, 陈金立, 朱艳萍. 基于迭代近端投影的二维欠采样合成孔径雷达成像[J]. 电子与信息学报, 2022, 44(6): 2127-2134. doi: 10.11999/JEIT210335
引用本文: 李家强, 郭桂祥, 陈金立, 朱艳萍. 基于迭代近端投影的二维欠采样合成孔径雷达成像[J]. 电子与信息学报, 2022, 44(6): 2127-2134. doi: 10.11999/JEIT210335
LI Jiaqiang, GUO Guixiang, CHEN Jinli, ZHU Yanping. Two-dimensional Underwent Synthetic Aperture Radar Imaging Based on Iterative Proximal Projection[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2127-2134. doi: 10.11999/JEIT210335
Citation: LI Jiaqiang, GUO Guixiang, CHEN Jinli, ZHU Yanping. Two-dimensional Underwent Synthetic Aperture Radar Imaging Based on Iterative Proximal Projection[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2127-2134. doi: 10.11999/JEIT210335

基于迭代近端投影的二维欠采样合成孔径雷达成像

doi: 10.11999/JEIT210335
基金项目: 国家自然科学基金(62071238, 61801231),江苏省自然科学基金(BK20191399)
详细信息
    作者简介:

    李家强:男,1976年生,博士,副教授,研究方向为雷达信号处理

    郭桂祥:男,1996年生,硕士生,研究方向为雷达信号处理

    陈金立:男,1982年生,博士,副教授,研究方向为MIMO雷达信号处理

    朱艳萍:女,1980年生,博士,讲师,研究方向为雷达信号处理

    通讯作者:

    李家强 ljq@nuist.edu.cn

  • 中图分类号: TN957.51

Two-dimensional Underwent Synthetic Aperture Radar Imaging Based on Iterative Proximal Projection

Funds: The National Natural Science Foundation of China (62071238, 61801231), The Natural Science Foundation of Jiangsu Province (BK20191399)
  • 摘要: 合成孔径成像雷达(SAR)具有数据量大、采样率高等特点,针对传统压缩感知(CS)的SAR成像存在精度低及抗噪性能差的问题,该文提出一种基于迭代近端投影(IPP)的2维欠采样合成孔径雷达成像重建方法。即通过对雷达回波构建为距离频域-方位多普勒域的2维稀疏表示模型,在此基础上将成像问题转化为距离向和方位向压缩感知稀疏重构问题,利用迭代近端投影算法的函数优化模型来表示合成孔径雷达成像中的稀疏表示,最后采用平滑削边绝对偏离(SCAD)罚函数获得近端算子以求解该模型并进行成像。仿真与实测数据处理结果表明,所提方法成像效果更好。
  • 图  1  合成孔径雷达成像几何模型

    图  2  SAR回波数据随机采样

    图  3  目标散射点模型与不同采样率下各算法成像结果

    图  4  不同采样率下成像性能曲线

    图  5  不同信噪比情况下各算法成像结果比较

    图  6  不同信噪比情况下成像性能曲线

    图  7  各算法成像结果

    表  1  雷达仿真参数

    参数数值
    雷达信号载频3 GHz
    雷达信号带宽150 MHz
    采样频率300 MHz
    雷达距目标区域中心点4200 m
    下载: 导出CSV

    表  2  采样率为原采样率1/2时各算法成像时间

    算法时间(s)
    IPP26.7381
    OMP18.7749
    SL027.3091
    BCS178.2851
    下载: 导出CSV

    表  3  温哥华场景RADARSAT-1参数

    参数数值
    距离带宽30.3 MHz
    距离向采样频率32.317 MHz
    脉冲宽度30.111 MHz
    卫星轨道半径7186029 m
    雷达波长0.05657 m
    下载: 导出CSV
  • [1] ZHU Hongliang, LEUNG R, and HONG Minyi. Shadow compensation for synthetic aperture radar target classification by dual parallel generative adversarial network[J]. IEEE Sensors Letters, 2020, 4(8): 7002904. doi: 10.1109/LSENS.2020.3009179
    [2] XIAO Peng, LIU Bo, and GUO Wei. ConGaLSAR: A constellation of geostationary and low earth orbit synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12): 2085–2089. doi: 10.1109/LGRS.2019.2962574
    [3] 杨磊, 张苏, 黄博, 等. 多任务协同优化学习高分辨SAR稀疏自聚焦成像算法[J]. 电子与信息学报, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300

    YANG Lei, ZHANG Su, HUANG Bo, et al. Multi-task learning of sparse autofocusing for high-resolution SAR imagery[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300
    [4] 田鹤, 于海锋, 朱宇, 等. 基于频域稀疏压缩感知的星载SAR稀疏重航过3维成像[J]. 电子与信息学报, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638

    TIAN He, YU Haifeng, ZHU Yu, et al. Sparse flight 3-D imaging of spaceborne SAR based on frequency domain sparse compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638
    [5] BU Hongxia, BAI Xia, and TAO Ran. Compressed sensing SAR imaging based on sparse representation in fractional Fourier domain[J]. Science China Information Sciences, 2012, 55(8): 1789–1800. doi: 10.1007/s11432-012-4607-6
    [6] PATEL V M, EASLEY G R, HEALY D M, et al. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244–254. doi: 10.1109/JSTSP.2009.2039181
    [7] DONG Xiao and ZHANG Yunhua. A novel compressive sensing algorithm for SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(2): 708–720. doi: 10.1109/JSTARS.2013.2291578
    [8] LIU Zhixue, LI Gang, ZHANG Hao, et al. SAR imaging of dominant scatterers using cascading StOMP[C]. Proceedings of 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1676–1679.
    [9] BU Hongxia, TAO Ran, BAI Xia, et al. A novel SAR imaging algorithm based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1003–1007. doi: 10.1109/LGRS.2014.2372319
    [10] 徐建平, 皮亦鸣, 曹宗杰. 基于贝叶斯压缩感知的合成孔径雷达高分辨成像[J]. 电子与信息学报, 2011, 33(12): 2863–2868. doi: 10.3724/SP.J.1146.2010.01377

    XU Jianping, PI Yiming, and CAO Zongjie. SAR imaging based on Bayesian compressive sensing[J]. Journal of Electronics &Information Technology, 2011, 33(12): 2863–2868. doi: 10.3724/SP.J.1146.2010.01377
    [11] 梁美美. 基于压缩感知的SAR成像算法研究[D]. [硕士论文], 哈尔滨工程大学, 2014.

    LIANG Meimei. Research of SAR imaging arithmetic based on compressed sensing[D]. [Master dissertation], Harbin Engineering University, 2014.
    [12] LI Shiyong, ZHAO Guoqiang, LI Houmin, et al. Near-field radar imaging via compressive sensing[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2): 828–833. doi: 10.1109/TAP.2014.2381262
    [13] GHAYEM F, SADEGHI M, BABAIE-ZADEH M, et al. Sparse signal recovery using iterative proximal projection[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 879–894. doi: 10.1109/TSP.2017.2778695
    [14] CHEN Jinli, ZHENG Yao, ZHANG Tingxiao, et al. Iterative reweighted proximal projection based DOA estimation algorithm for monostatic MIMO radar[J]. Signal Processing, 2020, 172: 107537. doi: 10.1016/j.sigpro.2020.107537
    [15] FAN Jianqing and LI Runze. Variable selection via Nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348–1360. doi: 10.1198/016214501753382273
    [16] 卜红霞, 白霞, 赵娟, 等. 基于压缩感知的矩阵型联合SAR成像与自聚焦算法[J]. 电子学报, 2017, 45(4): 874–881. doi: 10.3969/j.issn.0372-2112.2017.04.016

    BU Hongxia, BAI Xia, ZHAO Juan, et al. Joint matrix form SAR imaging and autofocus based on compressed sensing[J]. Acta Electronica Sinica, 2017, 45(4): 874–881. doi: 10.3969/j.issn.0372-2112.2017.04.016
    [17] TSENG P. Convergence of a block coordinate descent method for nondifferentiable minimization[J]. Journal of Optimization Theory and Applications, 2001, 109(3): 475–494. doi: 10.1023/A:1017501703105
    [18] 徐楚, 朱栋强, 汪玲, 等. 基于零空间 ${l_1}$ 范数最小化的ISAR成像方法[J]. 系统工程与电子技术, 2020, 42(2): 315–321. doi: 10.3969/j.issn.1001-506X.2020.02.09

    XU Chu, ZHU Dongqiang, WANG Ling, et al. ISAR imaging using null space l1 norm minimization[J]. Systems Engineering and Electronics, 2020, 42(2): 315–321. doi: 10.3969/j.issn.1001-506X.2020.02.09
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  184
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2022-02-28
  • 录用日期:  2022-03-07
  • 网络出版日期:  2022-03-19
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回