高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FPGA三模冗余工具的关键技术与发展

陈雷 张瑶伟 王硕 周婧 田春生 庞永江 马筱婧 周冲 杜忠

王定中, 李于凡. 基于方程相容性检测有源网络多重故障的可测性[J]. 电子与信息学报, 2001, 23(6): 589-596.
引用本文: 陈雷, 张瑶伟, 王硕, 周婧, 田春生, 庞永江, 马筱婧, 周冲, 杜忠. FPGA三模冗余工具的关键技术与发展[J]. 电子与信息学报, 2022, 44(6): 2230-2244. doi: 10.11999/JEIT210330
Wang Dingzhong, Li Yufan . TESTABILITY OF EQUATION CONSISTENCY BASED ALGORITHM FOR MULTIPLE-FAULT LOCATION OF ACTIVE NETWORKS[J]. Journal of Electronics & Information Technology, 2001, 23(6): 589-596.
Citation: CHEN Lei, ZHANG Yaowei, WANG Shuo, ZHOU Jing, TIAN Chunsheng, PANG Yongjiang, MA Xiaojing, ZHOU Chong, DU Zhong. Key Technology and Development of Triple Modular Redundancy Tool for FPGA[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2230-2244. doi: 10.11999/JEIT210330

FPGA三模冗余工具的关键技术与发展

doi: 10.11999/JEIT210330
基金项目: 国家科技重大专项(2009ZYHJ0005)
详细信息
    作者简介:

    陈雷:男,1978年生,研究员,主要研究方向为FPGA,Soc,ASIC等VLSI研发

    张瑶伟:男,1997年生,硕士生,主要研究方向为FPGA的三模冗余、高层次综合

    王硕:男,1985年生,硕士,主要研究方向为FPGA CAD算法

    周婧:女,1986年生,硕士,主要研究方向为故障注入、刷新技术、单粒子效应缓解技术

    田春生:男,1993年生,博士,主要研究方向为集成电路设计自动化

    庞永江:男,1991年生,硕士,主要研究方向为软件应用、IDE设计

    马筱婧:女,1993年生,硕士,主要研究方向为FPGA应用与验证

    周冲:男,1995年生,硕士,主要研究方向为综合、布局、布线

    杜忠:男,1975年生,研究员,主要研究方向为软件应用、抗辐照技术、FPGA测试、FPGA EDA

    通讯作者:

    张瑶伟 zyw18810532787@163.com

  • 中图分类号: TN47

Key Technology and Development of Triple Modular Redundancy Tool for FPGA

Funds: The National Science and Technology Major Project (2009ZYHJ0005)
  • 摘要: SRAM型现场可编程门阵列(FPGA)在空间辐射环境中容易受到单粒子效应的影响,从而发生软错误,三模冗余技术(TMR)是目前使用最广泛的缓解FPGA软错误的电路加固技术。该文首先介绍了三模冗余技术研究现状,然后总结了三模冗余工具常用的细粒度TMR技术、系统分级技术、配置刷新技术、状态同步技术4项关键技术及其实现原理。随着FPGA的高层次综合技术愈发成熟,基于高层次综合的三模冗余工具逐渐成为新的研究分支,该文分类介绍了当前主流的基于寄存器传输级的三模冗余工具,基于重要软核资源的三模冗余工具,以及新兴的基于高层次综合的三模冗余工具,最后对FPGA三模冗余工具的未来发展趋势进行了总结与展望。
  • 图  1  细粒度的TMR技术分类

    图  2  将TMR应用于分解的系统

    图  3  分级TMR系统中的容错与故障

    图  4  不带状态同步的TMR

    图  5  带状态同步的TMR

    图  6  关键技术的配合使用

    图  7  RASP-TMR生成的顶层文件结构

    图  8  TMRTool的实现

    图  9  SEU的检测与恢复状态机

    图  10  RTL设计与HLS设计的设计时间与应用性能

    图  11  新型容错硬件加速器设计

    图  12  MicroBlaze TMR子系统的部分结构图

    表  1  现有的TMR工具

    分类特点工具特点
    基于RTL可以实现对TMR实现细节的微调,
    面临综合阶段冗余被优化的问题,
    需要掌握综合阶段的各种中间网表文件的细节
    RASP-TMRVerilog语言的TMR,基于MATLAB开发,功能简单
    TMRGVerilog语言的TMR,使用Python编写,维护积极,适合学术交流
    Xilinx TMRToolRTL级.ngc网表文件的TMR,受国际武器贸易条例保护
    BL-TMRRTL级.edif网表文件的TMR,开源版本早已停止更新
    Mentor Precision Hi-RelRTL综合阶段TMR,采用细粒度TMR技术,基于汉明编码的安全状态机策略
    Synopsys Synplify
    Premier
    RTL综合阶段TMR,与Mentor的工具类似,网上可查阅的资料少
    基于HLS大幅缩短设计周期,提供流水线设计,减轻
    TMR设计带来的负面时序影响,
    对设计进行HLS空间探索
    TLegUpHLS阶段的TMR,构建该方向的大框架,受商业化的限制,更新停滞
    C-TMRC语言的TMR,可对设计进行HLS空间探索,还未形成完成工具
    基于软核对软核提供了功能完备的保护,但仅针对MicroBlaze提供TMR优化,使用范围单一局限Xilinx Vivado MicroBlaze TMR软核的TMR,5个IP组成的TMR子系统,自动管理和屏蔽影响MicroBlaze软核的故障
    下载: 导出CSV
  • [1] VON NEUMANN J. Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components[M]. SHANNON C E and MCCARTHY J. Automata Studies. Princeton: Princeton University Press, 1956: 43–98.
    [2] LYONS R E and VANDERKULK W. The use of triple-modular redundancy to improve computer reliability[J]. IBM Journal of Research and Development, 1962, 6(2): 200–209. doi: 10.1147/rd.62.0200
    [3] 黄影, 张春元, 刘东. SRAM型FPGA的抗SEU方法研究[J]. 中国空间科学技术, 2007(4): 57–65. doi: 10.3321/j.issn:1000-758X.2007.04.010

    HUANG Ying, ZHANG Chunyuan, and LIU Dong. Research on SEU mitigation of FPGA based-on SRAM[J]. Chinese Space Science and Technology, 2007(4): 57–65. doi: 10.3321/j.issn:1000-758X.2007.04.010
    [4] PRATT B, CAFFREY M, GRAHAM P, et al. Improving FPGA design robustness with partial TMR[C]. 2006 IEEE International Reliability Physics Symposium Proceedings, San Jose, USA, 2006: 226–232.
    [5] SAMUDRALA P K, RAMOS J, and KATKOORI S. Selective triple modular redundancy (STMR) based single-event upset (SEU) tolerant synthesis for FPGAs[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2957–2969. doi: 10.1109/TNS.2004.834955
    [6] GOMES I A C, MARTINS M, REIS A, et al. Using only redundant modules with approximate logic to reduce drastically area overhead in TMR[C]. 2015 16th Latin-American Test Symposium (LATS), Puerto Vallarta, Mexico, 2015: 1–6.
    [7] SHASHIDHARA B, JADHAV S, and KIM Y S. Reconfigurable fault tolerant processor on a SRAM based FPGA[C]. 2020 IEEE International Conference on Electro Information Technology (EIT), Chicago, USA, 2020: 151–154.
    [8] 段小虎, 马小博, 程俊强. SRAM工艺FPGA三模冗余设计故障管理与恢复[J]. 信息通信, 2020(3): 139–141,143. doi: 10.3969/j.issn.1673-1131.2020.03.059

    DUAN Xiaohu, MA Xiaobo, and CHENG Junqiang. Fault management and recovery of triple modular redundancy design for SRAM-based FPGA[J]. Information &Communications, 2020(3): 139–141,143. doi: 10.3969/j.issn.1673-1131.2020.03.059
    [9] 徐伟杰, 谢永乐, 彭礼彪, 等. 基于SRAM型FPGA的实时容错自修复系统设计方法[J]. 电子技术应用, 2019, 45(7): 50–55. doi: 10.16157/j.issn.0258-7998.190480

    XU Weijie, XIE Yongle, PENG Libiao, et al. SRAM based FPGA system capable of runtime fault tolerance and recovery[J]. Application of Electronic Technique, 2019, 45(7): 50–55. doi: 10.16157/j.issn.0258-7998.190480
    [10] 张超, 赵伟, 刘峥. 基于FPGA的三模冗余容错技术研究[J]. 现代电子技术, 2011, 34(5): 167–171. doi: 10.3969/j.issn.1004-373X.2011.05.051

    ZHANG Chao, ZHAO Wei, and LIU Zheng. Research of TMR-based fault-tolerance techniques based on FPGA[J]. Modern Electronics Technique, 2011, 34(5): 167–171. doi: 10.3969/j.issn.1004-373X.2011.05.051
    [11] NIKNAHAD M. Using Fine Grain Approaches for Highly Reliable Design of FPGA-Based Systems in Space[M]. Karlsruhe: KIT Scientific Publishing, 2013.
    [12] BENITES L A C. Automated design flow for applying triple modular redundancy in complex semi-custom digital integrated circuits[D]. [Master dissertation], Universidade Federal do Rio Grande Do Sul, 2018.
    [13] BENITES L A C and KASTENSMIDT F L. Automated design flow for applying Triple Modular Redundancy (TMR) in complex digital circuits[C]. 2018 IEEE 19th Latin-American Test Symposium (LATS), São Paulo, Brazil, 2018: 1–4.
    [14] BENITES L A C, BENEVENUTI F, DE OLIVEIRA Á B, et al. Reliability calculation with respect to functional failures induced by radiation in TMR arm cortex-M0 soft-core embedded into SRAM-based FPGA[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1433–1440. doi: 10.1109/TNS.2019.2921796
    [15] BENEVENUTI F, CHIELLE E, TONFAT J, et al. Experimental applications on SRAM-based FPGA for the NanosatC-BR2 scientific mission[C]. 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, 2019: 140–146.
    [16] BERG M and LABEL K A. Verification of triple modular redundancy (TMR) insertion for reliable and trusted systems[C]. Proceedings of the Government Microcircuit Applications & Critical Technology Conference, Orlando, USA, 2016.
    [17] PRATT B, WIRTHLIN M, CAFFREY M, et al. Improving FPGA reliability in harsh environments using triple modular redundancy with more frequent voting[C]. Proceedings of the Prentice Hall. Military and Aerospace FPGA Applications Conference, Palm Beach, USA, 2007.
    [18] CANNON M J. Improving the single event effect response of triple modular redundancy on SRAM FPGAs through placement and routing[D]. [Ph. D. dissertation], Brigham Young University, 2019.
    [19] ROWBERRY H C. A soft-error reliability testing platform for FPGA-based network systems[D]. [Master dissertation], Brigham Young University, 2019.
    [20] STODDARD A G. Configuration scrubbing architectures for high-reliability FPGA systems[D]. [Master dissertation], Brigham Young University, 2015.
    [21] 严健生, 杨柳青. 卫星用SRAM型FPGA抗单粒子翻转可靠性设计研究[J]. 科技创新与应用, 2021(9): 48–50,53.

    YAN Jiansheng and YANG Liuqing. Reliability design of anti-single event upset (SEU) of SRAM-FPGA for satellites[J]. Technology Innovation and Application, 2021(9): 48–50,53.
    [22] HERRERA-ALZU I and LOPEZ-VALLEJO M. Design techniques for Xilinx Virtex FPGA configuration memory scrubbers[J]. IEEE Transactions on Nuclear Science, 2013, 60(1): 376–385. doi: 10.1109/TNS.2012.2231881
    [23] HOQUE K A. Early dependability analysis of FPGA-based space applications using formal verification[D]. [Ph. D. dissertation], Concordia University, 2016.
    [24] NAZAR G L, SANTOS L P, and CARRO L. Scrubbing unit repositioning for fast error repair in FPGAs[C]. 2013 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, Montreal, Canada, 2013: 1–10.
    [25] NAZAR G L, SANTOS L P, and CARRO L. Fine-grained fast field-programmable gate array scrubbing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(5): 893–904. doi: 10.1109/TVLSI.2014.2330742
    [26] ZHANG Rongsheng, XIAO Liyi, CAO Xuebing, et al. A fast scrubbing method based on triple modular redundancy for SRAM-based FPGAs[C]. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 2018: 1–3.
    [27] JOHNSON J M. Synchronization voter insertion algorithms for FPGA designs using triple modular redundancy[D]. [Master dissertation], Brigham Young University, 2010.
    [28] JOHNSON J M and WIRTHLIN M J. Voter insertion algorithms for FPGA designs using triple modular redundancy[C]. Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays, USA, 2010: 249–258.
    [29] KHATRI A R, HAYEK A, and BÖRCSÖK J. RASP-TMR: An automatic and fast synthesizable Verilog code generator tool for the implementation and evaluation of TMR approach[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(8): 590–597. doi: 10.14569/IJACSA.2018.090875
    [30] KHATRI A R. Overview of fault tolerance techniques and the proposed TMR generator tool for FPGA designs[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(4): 749–753. doi: 10.14569/IJACSA.2020.0110497
    [31] KULIS S. Single event effects mitigation with TMRG tool[J]. Journal of Instrumentation, 2017, 12: C01082. doi: 10.1088/1748-0221/12/01/C01082
    [32] CERN. Triple Modular Redundancy Generator (TMRG)[EB/OL]. https://tmrg.web.cern.ch/tmrg/tmrg.pdf, 2020.
    [33] KULIS S. Single event upsets mitigation techniques[EB/OL]. https://indico.cern.ch/event/465343/attachments/1256299/1854682/tmrg_skulis_ep_ese.pdf, 2016.
    [34] Xilinx. Xilinx TMRTool Industry’s first triple modular redundancy development tool for re-configurable FPGAs[EB/OL]. https://www.xilinx.com/publications/prod_mktg/TRMTool-2015.pdf, 2015.
    [35] CARMICHAEL C. Triple module redundancy design techniques for Virtex FPGAs[EB/OL]. Xilinx Application Note XAPP197, https://china.xilinx.com/content/dam/xilinx/support/documents/application_notes/xapp197.pdf, 2001.
    [36] Xilinx. Xilinx TMRTool User Guide: TMRTool software Version 13.2[EB/OL]. https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug156-tmrtool.pdf, 2017.
    [37] WIRTHLIN M. The benefits of feedback TMR for SEU tolerance of SRAM FPGA designs[EB/OL]. https://indico.esa.int/event/130/contributions/723/attachments/781/958/ESA_SEFUW_TMR_March_2016-3.pdf, 2016.
    [38] ANWER J, PLATZNER M, and MEISNER S. FPGA redundancy configurations: An automated design space exploration[C]. 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, Phoenix, USA, 2014: 275–280.
    [39] DANG Wansheng. FPGA radiation effects mitigation technology on logic synthesis[EB/OL]. 2020.
    [40] GRAPHICS M. Precision Hi-Rel synthesis software[EB/OL]. https://eda.sw.siemens.com/en-US/ic/precision/hi-rel/, 2018.
    [41] MERKELOV F. Design techniques for implementing highly reliable designs using FPGAs[EB/OL]. https://www.microsemi.com/document-portal/doc_view/132934-design-techniques-for-implementing-high-reliable-designs-using-microsemi-space-fpgas-russia-2013, 2013.
    [42] LEE G, AGIAKATSIKAS D, WU Tong, et al. TLegUp: A TMR code generation tool for SRAM-based FPGA applications using HLS[C]. 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, USA, 2017: 129–132.
    [43] BERNARDI M, CETIN E, and DIESSEL O. Correct high level synthesis of triple modular redundant user circuits for FPGAs[R]. UNSW-CSE-TR-201804, 2018.
    [44] AGIAKATSIKAS D. High-level synthesis of triple modular redundant FPGA circuits with energy efficient error recovery mechanisms[D]. [Ph. D. dissertation], University of New South Wales, 2019.
    [45] ZHU Zhiqi, TAHER F N, and SCHAFER B C. Exploring design trade-offs in fault-tolerant behavioral hardware accelerators[C]. Proceedings of the 2019 on Great Lakes Symposium on VLSI, Tysons Corner, USA, 2019: 291–294.
    [46] PARVIS M and AGNELLO M. High-energy physics fault tolerance metrics and testing methodologies for SRAM-based FPGAs[D]. [Master dissertation], Politecnico di Torino, 2018.
    [47] Xilinx. Microblaze triple modular redundancy(TMR) subsystem v1.0: Product guide[EB/OL]. https://www.xilinx.com/support/documentation/ip_documentation/tmr/v1_0/pg268-tmr.pdf, 2019.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  2178
  • HTML全文浏览量:  1002
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2022-03-23
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回