高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

故障扰动下振荡环型真随机数发生器安全特性及度量方法研究

罗芳 欧庆于 周学广 褚潍禹 高飞

罗芳, 欧庆于, 周学广, 褚潍禹, 高飞. 故障扰动下振荡环型真随机数发生器安全特性及度量方法研究[J]. 电子与信息学报, 2022, 44(6): 2093-2100. doi: 10.11999/JEIT210328
引用本文: 罗芳, 欧庆于, 周学广, 褚潍禹, 高飞. 故障扰动下振荡环型真随机数发生器安全特性及度量方法研究[J]. 电子与信息学报, 2022, 44(6): 2093-2100. doi: 10.11999/JEIT210328
LUO Fang, OU Qingyu, ZHOU Xueguang, CHU Weiyu, GAO Fei. Research on the Security Characteristic and Metric Method for Ring Oscillatro-based True Random Number Generator under Fault Disturbance[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2093-2100. doi: 10.11999/JEIT210328
Citation: LUO Fang, OU Qingyu, ZHOU Xueguang, CHU Weiyu, GAO Fei. Research on the Security Characteristic and Metric Method for Ring Oscillatro-based True Random Number Generator under Fault Disturbance[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2093-2100. doi: 10.11999/JEIT210328

故障扰动下振荡环型真随机数发生器安全特性及度量方法研究

doi: 10.11999/JEIT210328
基金项目: 国家自然科学基金(61672531)
详细信息
    作者简介:

    罗芳:女,1983年生,讲师,研究方向为密码编码理论、密码安全性分析

    欧庆于:男,1978年生,副教授,研究方向为密码芯片安全性分析

    周学广:男,1966年生,教授,博士生导师,研究方向为密码编码理论、内容安全

    褚潍禹:男,1996年生,硕士生,研究方向为密码芯片安全性分析

    高飞:男,1991年生,讲师,研究方向为密码芯片安全性分析

    通讯作者:

    欧庆于 ouqingyv@163.com

  • 中图分类号: TN915.08; TP309.1

Research on the Security Characteristic and Metric Method for Ring Oscillatro-based True Random Number Generator under Fault Disturbance

Funds: The National Natural Science Foundation of China (61672531)
  • 摘要: 作为密码安全性的根源,在各类密码体制和系统中,真随机数起着不可替代的重要作用。现实中,真随机数往往基于随机物理过程实现,从而使其可能遭受环境引入或攻击者恶意施加的影响,造成随机数生成质量的下降,进而对密码应用安全性产生威胁。该文以当前广泛应用的基于振荡环的真随机数发生器(RO-TRNG)为对象,对故障注入场景下,熵源和熵抽取部分受到的影响及由此造成的安全性变异进行了深入分析和研究,并基于捕获偏置度提出了能够充分反映故障扰动场景下RO-TRNG安全特性的度量模型。实验表明,该度量模型能够很好地反映在遭受故障扰动时,RO-TRNG在抖动方差累积和节拍延迟链上升沿捕获概率偏置等方面受到的影响,并对RO-TRNG在高危复杂环境下的安全性实施客观分析。
  • 图  1  TDC的非均匀特性

    图  2  故障扰动下的捕获概率偏置

    图  3  FPGA核心电压毛刺注入

    图  4  RO-TRNG实现布局

    图  5  方差累积特性的对比

    图  6  节拍延迟链时延变化特性测量结果

    图  7  振荡信号捕获概率变化特性测量结果

    表  1  不同序号捕获概率变化趋势

    123456789101112131415
    $ {P_{{L_1}}} $0.50.60.70.80.8230.8360.8450.8620.8940.9120.9350.9460.9570.9690.972
    $ {P_{{L_0}}} $0.50.40.30.20.1770.1640.1550.1380.1060.0880.0650.0540.0430.0310.028
    下载: 导出CSV

    表  2  方差累积特性测量结果

    参数测量值
    正常
    情况
    $ {t_N} $( ns)800160024004000500010000
    $ \sigma _N^2 $1.49591.72442.15072.26883.65977.4597
    故障
    注入
    $ {t_N} $( ns)800160024004000500010000
    $ \hat \sigma _N^2 $2.74258.15826.70732.67198.567713.1086
    下载: 导出CSV

    表  3  与其他度量方法的对比

    度量模型采样次数正常场景度量结果扰动场景度量结果参考文献
    频率度量
    (阈值设为0.01)
    100000.001710.00192文献[23,24]
    2000000.002140.00101
    50000000.006130.00339
    Maurer通用统计度量
    L=7, Q=1280,阈值设为0.01)
    100000.000720.00065
    2000000.001310.00143
    50000000.003270.00269
    基于捕获偏置度的度量100001.41341.5375本文
    2000001,35561.9571
    50000001.25963.0836
    下载: 导出CSV
  • [1] DUMONT M, LISART M, and MAURINE P. Electromagnetic fault injection: How faults occur[C]. 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Atlanta, USA, 2019: 9–16.
    [2] GAY M, PAXIAN T, UPADHYAYA D, et al. . Hardware-oriented algebraic fault attack framework with multiple fault injection support[C]. 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Atlanta, USA, 2019: 25–32.
    [3] GRUBER M, PROBST M, and TEMPELMEIER M. Persistent fault analysis of OCB, DEOXYS and COLM[C]. 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Atlanta, USA, 2019: 17–24.
    [4] DAEMEN J, DOBRAUNIG C, EICHLSEDER M, et al. Protecting against statistical ineffective fault attacks[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(3): 508–543.
    [5] MARKETTOS A T and MOORE S W. The frequency injection attack on ring-oscillator-based true random number generators[C]. 11th International Workshop on Cryptographic Hardware and Embedded Systems, Lausanne, Switzerland, 2009: 317–331.
    [6] BAYON P, BOSSUET L, AUBERT A, et al. . Contactless electromagnetic active attack on ring oscillator based true random number generator[C]. Third International Workshop on Constructive Side-Channel Analysis and Secure Design, Darmstadt, Germany, 2012: 151–166.
    [7] BAYON P, BOSSUET L, AUBERT A, et al. . Electromagnetic analysis on ring oscillator-based true random number generators[C]. 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013: 1954–1957.
    [8] BAUDET M, LUBICZ D, MICOLOD J, et al. On the security of oscillator-based random number generators[J]. Journal of Cryptology, 2011, 24(2): 398–425. doi: 10.1007/s00145-010-9089-3
    [9] BÉRINGUIER-BOHER N, BEROULLE V, HÉLY D, et al. Clock generator behavioral modeling for supply voltage glitch attack effects analysis[J]. Microprocessors and Microsystems, 2016, 47: 37–43. doi: 10.1016/j.micpro.2016.02.014
    [10] MADAU M, AGOYAN M, BALASCH J, et al. . The impact of pulsed Electromagnetic fault injection on true random number generators[C]. 2018 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Amsterdam, Holland, 2018: 43–48.
    [11] GUILLEY S and EL HOUSNI Y. Random numbers generation: Tests and attacks[C]. 2018 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Amsterdam, Holland, 2018: 49–54.
    [12] EPSTEIN M, HARS L, KRASINSKI R, et al. . Design and implementation of a true random number generator based on digital circuit artifacts[C]. 5th International Workshop on Cryptographic Hardware and Embedded Systems, Cologne, Germany, 2003: 152–165.
    [13] PARESCHI F, SETTI G, and ROVATTI R. A fast chaos-based true random number generator for cryptographic applications[C]. 2006 Proceedings of the 32nd European Solid-State Circuits Conference, Montreaux, Switzerland, 2006: 130–133.
    [14] 魏子魁, 胡毅, 金鑫, 等. 一种低功耗高噪声源真随机数设计[J]. 电子与信息学报, 2020, 42(10): 2566–2572. doi: 10.11999/JEIT190719

    WEI Zikui, HU Yi, JIN Xin, et al. A true random number design of low power and high noise source[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2566–2572. doi: 10.11999/JEIT190719
    [15] ROZIC V, YANG Bohan, DEHAENE W, et al. . Highly efficient entropy extraction for true random number generators on FPGAs[C]. The 52nd Annual Design Automation Conference, San Francisco, USA, 2015: 116.
    [16] GRUJIĆ M, ROŽIĆ V, YANG Bohan, et al. . A closer look at the delay-chain based TRNG[C]. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018: 1–5.
    [17] YANG Bohan, ROŽIC V, GRUJIC M, et al. ES-TRNG: A high-throughput, low-area true random number generator based on edge sampling[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018, 2018(3): 267–292.
    [18] HADDAD P, TEGLIA Y, BERNARD F, et al. . On the assumption of mutual independence of jitter realizations in P-TRNG stochastic models[C]. 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2014: 1–6.
    [19] BOZZATO C, FOCARDI R, and PALMARINI F. Shaping the glitch: Optimizing voltage fault injection attacks[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(2): 199–224.
    [20] 欧庆于, 罗芳, 吴晓平, 等. 基于电压毛刺故障扰动的分组密码安全性度量方法研究[J]. 电子学报, 2021, 49(3): 417–423. doi: 10.12263/DZXB.20200514

    OU Qingyu, LUO Fang, WU Xiaoping, et al. Research on the metric method for the security of the block cipher based on the voltage glitch fault disturbance[J]. Acta Electronica Sinica, 2021, 49(3): 417–423. doi: 10.12263/DZXB.20200514
    [21] ALLINI E N, SKÓRSKI M, PETURA O, et al. Evaluation and monitoring of free running oscillators serving as source of randomness[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018, 2018(3): 214–242.
    [22] YANG Bohan, ROŽIĆ V, GRUJIĆ M, et al. . On-chip jitter measurement for true random number generators[C]. 2017 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). Beijing, China, 2017: 91–96.
    [23] 国家密码管理局. GM/T 0005-2012 随机性检测规范[S]. 北京: 中国标准出版社, 2012.

    National Cryptography Administration. GM/T 0005-2012 Randomness test specification[S]. Beijing: China Standard Press, 2012.
    [24] NIST. NIST Statistical Test Suite[EB/OL]. http://www.doc88.com/p-3126997400376.html, 2021.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  831
  • HTML全文浏览量:  412
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-09-29
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回