高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于兴趣倾向机制的仿生SLAM算法

陈孟元 张玉坤 田德红 丁陵梅

陈孟元, 张玉坤, 田德红, 丁陵梅. 基于兴趣倾向机制的仿生SLAM算法[J]. 电子与信息学报, 2022, 44(5): 1743-1753. doi: 10.11999/JEIT210313
引用本文: 陈孟元, 张玉坤, 田德红, 丁陵梅. 基于兴趣倾向机制的仿生SLAM算法[J]. 电子与信息学报, 2022, 44(5): 1743-1753. doi: 10.11999/JEIT210313
CHEN Mengyuan, ZHANG Yukun, TIAN Dehong, DING Lingmei. Bionic SLAM Algorithm Based on Interest Tendency Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1743-1753. doi: 10.11999/JEIT210313
Citation: CHEN Mengyuan, ZHANG Yukun, TIAN Dehong, DING Lingmei. Bionic SLAM Algorithm Based on Interest Tendency Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1743-1753. doi: 10.11999/JEIT210313

基于兴趣倾向机制的仿生SLAM算法

doi: 10.11999/JEIT210313
基金项目: 国家自然科学基金(61903002),芜湖市科技计划项目(2020yf59),安徽工程大学-鸠江区产业协同创新专项基金(2021cyxtb8),安徽工程大学中青年拔尖人才项目,安徽省高校协同创新项目(GXXT-2021-050)
详细信息
    作者简介:

    陈孟元:男,1984年生,博士,副教授,硕士生导师,主要研究方向为移动机器人SLAM、目标跟踪及路径规划

    张玉坤:男,1995年生,硕士生,主要研究方向为移动机器人SLAM

    田德红:男,1995年生,硕士生,主要研究方向为移动机器人SLAM

    丁陵梅:女,1994年生,硕士生,主要研究方向为移动机器人SLAM

    通讯作者:

    陈孟元 mychen@ahpu.edu.cn

  • 中图分类号: TP242.6

Bionic SLAM Algorithm Based on Interest Tendency Mechanism

Funds: The National Natural Science Foundation of China (61903002), The Science and Technology Planning Project of Wuhu, Anhui Province (2020yf59), The Anhui Polytechnic University-Jiujiang District Industry Collaborative Innovation Special Foundation (2021cyxtb8), The Middle-aged and Top-notch Talent Project of Anhui Polytechnic University, The University Synergy Innovation Program of Anhui Province (GXXT-2021-050)
  • 摘要: 该文针对同时定位与地图创建(SLAM)闭环检测算法易受复杂环境因素干扰,导致定位误差较大、闭环检测精度低等问题,受哺乳动物空间认知机理启发,提出一种基于兴趣倾向机制的仿生SLAM算法。采用反Hebbian网络(Lateral Anti-Hebbian Networkm, LAHN)对网格细胞进行建模,通过不规则复杂环境边界信息对网格细胞进行校正来提高算法定位精度。利用兴趣倾向机制对提取的显著性区域进行兴趣赋值,减小冗余显著性区域带来的影响,提高系统闭环准确率。将位置感知模型获取的位置信息与视觉感知模板相关联构建认知地图。在公开数据集及真实环境中进行测试,测试结果表明该文算法在构建认知地图的准确率、实时性以及对环境的适应能力具有优势。
  • 图  1  认知地图构建

    图  2  网格细胞分布图

    图  3  融合自注意力机制的卷积神经网络结构

    图  4  图像特征提取示意图

    图  5  TUM部分序列轨迹对比图

    图  6  KITTI部分序列轨迹对比图

    图  7  硬件平台及真实实验环境场景

    图  8  移动机器人路径图

    图  9  视觉里程计与本文算法定位误差对比图

    表  1  融合自注意力机制的卷积神经网络参数设置

    序号区域划分层类型卷积核步长深度激活函数
    0编码器Convolution7×7164ReLU
    1编码器Convolution3×32128ReLU
    2编码器Convolution3×32256ReLU
    3中间区Residual Block3×31256ReLU
    4中间区Residual Block3×31256ReLU
    5中间区Residual Block3×31256ReLU
    6中间区Residual Block3×31256ReLU
    7中间区Residual Block3×32256ReLU
    8中间区Residual Block3×32256ReLU
    9解码器Deconvlution3×32128ReLU
    10解码器Self-Attention
    11解码器Deconvlution3×3164ReLU
    12解码器Convolution7×713Tanh
    13解码器Interest Propensity
    下载: 导出CSV

    表  2  各算法在TUM数据集上的结果对比

    序列轨迹均方根误差(RMSE/m)单帧图像处理时间(ms)闭环准确率(%)
    ORB-SLAMRatSLAM本文算法ORB-SLAMRatSLAM本文算法ORB-SLAMRatSLAM本文算法
    fr2/coke0.0560.0680.04212921114583.474.288.1
    fr2/sphere0.0370.0430.03113519816282.573.486.5
    fr1/plant0.0520.0650.03914623016884.274.289.2
    fr1/desk0.0630.0750.05113421815382.672.885.1
    下载: 导出CSV

    表  3  各算法在KITTI数据集上的结果对比

    序列相对平移误差(m)相对旋转误差(°)耗时(min)
    ORB-SLAMRatSLAM本文算法ORB-SLAMRatSLAM本文算法ORB-SLAMRatSLAM本文算法
    008.3110.595.453.244.342.859.7315.9610.87
    0110.7512.3710.423.453.673.022.383.532.97
    029.5912.517.214.825.133.6511.4417.8613.15
    0312.2414.1212.255.956.586.021.752.912.24
    044.525.344.252.763.673.710.570.910.71
    053.824.812.652.023.271.585.4810.177.87
    063.215.721.911.721.941.132.424.423.06
    下载: 导出CSV

    表  4  主要参数设置

    变量名称参数数值
    运行速度$ v $1 m/s
    方向变化范围$ \mathop \theta \nolimits^{} $[0, 2π]
    位置采样点$ {n_s} $1000
    网格细胞总数$ \mathop N\nolimits_{} $260
    下载: 导出CSV
  • [1] 左燕, 周夏磊, 蒋陶然. 传感器位置误差下外辐射源雷达三维定位代数解算法[J]. 电子与信息学报, 2020, 42(3): 555–562. doi: 10.11999/JEIT190292

    ZUO Yan, ZHOU Xialei, and JIANG Taoran. Algebraic solution for 3D localization of multistatic passive radar in the presence of sensor position errors[J]. Journal of Electronics &Information Technology, 2020, 42(3): 555–562. doi: 10.11999/JEIT190292
    [2] 李世宝, 王升志, 刘建航, 等. 基于接收信号强度非齐性分布特征的半监督学习室内定位指纹库构建[J]. 电子与信息学报, 2019, 41(10): 2302–2309. doi: 10.11999/JEIT180599

    LI Shibao, WANG Shengzhi, LIU Jianhang, et al. Semi-supervised indoor fingerprint database construction method based on the nonhomogeneous distribution characteristic of received signal strength[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2302–2309. doi: 10.11999/JEIT180599
    [3] 李庆华, 尤越, 沐雅琪, 等. 一种针对大型凹型障碍物的组合导航算法[J]. 电子与信息学报, 2020, 42(4): 917–923. doi: 10.11999/JEIT190179

    LI Qinghua, YOU Yue, MU Yaqi, et al. Integrated navigation algorithm for large concave obstacles[J]. Journal of Electronics &Information Technology, 2020, 42(4): 917–923. doi: 10.11999/JEIT190179
    [4] MOSER E I, KROPFF E, and MOSER M B. Place cells, grid cells, and the brain's spatial representation system[J]. Annual Review of Neuroscience, 2008, 31(1): 69–89. doi: 10.1146/annurev.neuro.31.061307.090723
    [5] MOSER E I, ROUDI Y, WITTER M P, et al. Grid cells and cortical representation[J]. Nature Reviews Neuroscience, 2014, 15(7): 466–481. doi: 10.1038/nrn3766
    [6] YUAN Miaolong, TIAN Bo, SHIM V A, et al. An entorhinal-hippocampal model for simultaneous cognitive map building[C]. Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, USA, 2015: 586–592.
    [7] HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436(7052): 801–806. doi: 10.1038/nature03721
    [8] DOELLER C F, BARRY C, and BURGESS N. Evidence for grid cells in a human memory network[J]. Nature, 2010, 463(7281): 657–661. doi: 10.1038/nature08704
    [9] O'KEEFE J and DOSTROVSKY J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171–175. doi: 10.1016/0006-8993(71)90358-1
    [10] SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of geometric borders in the entorhinal cortex[J]. Science, 2008, 322(5909): 1865–1868. doi: 10.1126/science.1166466
    [11] KRUPIC J, BURGESS N, and O'KEEFE J. Neural representations of location composed of spatially periodic bands[J]. Science, 2012, 337(6096): 853–857. doi: 10.1126/science.1222403
    [12] BARRY C, HAYMAN R, BURGESS N, et al. Experience-dependent rescaling of entorhinal grids[J]. Nature Neuroscience, 2007, 10(6): 682–684. doi: 10.1038/nn1905
    [13] HARDCASTLE K, GANGULI S, and GIOCOMO L M. Environmental boundaries as an error correction mechanism for grid cells[J]. Neuron, 2015, 86(3): 827–839. doi: 10.1016/j.neuron.2015.03.039
    [14] JAYAKUMAR S, NARAYANAMURTHY R, RAMESH R, et al. Modeling the effect of environmental geometries on grid cell representations[J]. Frontiers in Neural Circuits, 2019, 12: 120. doi: 10.3389/fncir.2018.00120
    [15] REBAI K, AZOUAOUI O, and ACHOUR N. Bio-inspired visual memory for robot cognitive map building and scene recognition[C]. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012: 2985–2990. doi: 10.1109/IROS.2012.6385493.
    [16] MILFORD M J and WYETH G F. Mapping a suburb with a single camera using a biologically inspired SLAM system[J]. IEEE Transactions on Robotics, 2008, 24(5): 1038–1053. doi: 10.1109/TRO.2008.2004520
    [17] GLOVER A J, MADDERN W P, MILFORD M J, et al. FAB-MAP + RatSLAM: Appearance-based SLAM for multiple times of day[C]. 2010 IEEE International Conference on Robotics and Automation, Anchorage, USA, 2010: 3507–3512. doi: 10.1109/ROBOT.2010.5509547.
    [18] HOU Yi, ZHANG Hong, and ZHOU Shilin. Convolutional neural network-based image representation for visual loop closure detection[C]. 2015 IEEE International Conference on Information and Automation, Lijiang, China, 2015: 2238–2245. doi: 10.1109/ICInfA.2015.7279659.
    [19] 李维鹏, 张国良, 姚二亮, 等. 基于场景显著区域的改进闭环检测算法[J]. 机器人, 2017, 39(1): 23–35. doi: 10.13973/j.cnki.robot.2017.0023

    LI Weipeng, ZHANG Guoliang, YAO Erliang, et al. An improved loop closure detection algorithm based on scene salient regions[J]. Robot, 2017, 39(1): 23–35. doi: 10.13973/j.cnki.robot.2017.0023
    [20] JUN H, BRAMIAN A, SOMA S, et al. Disrupted place cell remapping and impaired grid cells in a knockin model of alzheimer's disease[J]. Neuron, 2020, 107(6): 1095–1112. doi: 10.1016/j.neuron.2020.06.023
    [21] YU Shumei, WU Junyi, XU Haidong, et al. Robustness improvement of visual templates matching based on frequency-tuned model in RatSLAM[J]. Frontiers in Neurorobotics, 2020, 14: 568091. doi: 10.3389/fnbot.2020.568091
    [22] 陈孟元, 徐明辉. 基于自组织可增长映射的移动机器人仿生定位算法研究[J]. 电子与信息学报, 2021, 43(4): 1003–1013. doi: 10.11999/JEIT200025

    CHEN Mengyuan and XU Minghui. Research on mobile robot bionic location algorithm based on growing self-organizing map[J]. Journal of Electronics &Information Technology, 2021, 43(4): 1003–1013. doi: 10.11999/JEIT200025
    [23] 陈孟元, 田德红. 基于多尺度网格细胞到位置细胞的仿生SLAM算法[J]. 计算机辅助设计与图形学学报, 2021, 33(5): 712–723. doi: 10.3724/SP.J.1089.2021.18407

    CHEN Mengyuan and TIAN Dehong. Bionic SLAM algorithm based on multi-scale grid cell to place cell[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(5): 712–723. doi: 10.3724/SP.J.1089.2021.18407
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  840
  • HTML全文浏览量:  658
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-15
  • 修回日期:  2021-06-24
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回