高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称忆阻诱导的吸引子非对称演化与机理研究

武花干 周杰 陈胜垚 陈墨 徐权

武花干, 周杰, 陈胜垚, 陈墨, 徐权. 非对称忆阻诱导的吸引子非对称演化与机理研究[J]. 电子与信息学报, 2022, 44(6): 2101-2109. doi: 10.11999/JEIT210307
引用本文: 武花干, 周杰, 陈胜垚, 陈墨, 徐权. 非对称忆阻诱导的吸引子非对称演化与机理研究[J]. 电子与信息学报, 2022, 44(6): 2101-2109. doi: 10.11999/JEIT210307
WU Huagan, ZHOU Jie, CHEN Shengyao, CHEN Mo, XU Quan. Asymmetric Memristor-induced Attractor Asymmetric Evolution and Its Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2101-2109. doi: 10.11999/JEIT210307
Citation: WU Huagan, ZHOU Jie, CHEN Shengyao, CHEN Mo, XU Quan. Asymmetric Memristor-induced Attractor Asymmetric Evolution and Its Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2101-2109. doi: 10.11999/JEIT210307

非对称忆阻诱导的吸引子非对称演化与机理研究

doi: 10.11999/JEIT210307
基金项目: 国家自然科学基金(61801054, 51607013),江苏省研究生创新项目(KYCX20_2550)
详细信息
    作者简介:

    武花干:女,1987年生,副教授,研究方向为非线性电路与系统、神经元功能性电路

    周杰:男,1996年生,硕士生,研究方向为非线性电路与系统

    陈胜垚:男,1985年生,副教授,研究方向为雷达信号处理、混沌动力学系统

    陈墨:女,1982年生,副教授,研究方向为非线性电路与系统、神经元功能性电路

    徐权:男,1983年生,副教授,研究方向为忆阻神经网络、非线性电路与系统

    通讯作者:

    徐权 xuquan@cczu.edu.cn

  • 中图分类号: TN713; TN601

Asymmetric Memristor-induced Attractor Asymmetric Evolution and Its Mechanism

Funds: The National Natural Science Foundations of China (61801054, 51607013), The Postgraduate Education Reform Projects of Jiangsu Province (KYCX20_2550)
  • 摘要: 紧磁滞回线是评测物理器件或数学模型是否为忆阻的关键依据,其对称特性也是忆阻的重要特征之一。该文提出一种有源非对称忆阻二极管桥模拟器,它通过改变二极管桥中并联二极管的数量可实现紧磁滞回线非对称度的控制。首先,验证了该非对称忆阻模拟器的指纹特征,并着重探讨了激励频率和对称度控制参数对紧磁滞回线非对称度的影响。进一步地,将该非对称忆阻模拟器耦合到Sallen-Key高通滤波器,构建了一种无感忆阻蔡氏电路;建立了相应的无量纲系统,并揭示了系统吸引子的非对称演化现象。结合平衡点稳定性分析、分岔分析和多吸引子状态初值空间分布,阐明了吸引子非对称演化的产生机理。结果表明,受非对称忆阻的影响,无感忆阻蔡氏电路的两个不稳定鞍焦点失去平衡,导致了非对称共存分岔、多稳定模态等行为的产生。最后,由硬件电路实验验证了理论分析与数值仿真的正确性。
  • 图  1  有源PAMD模拟器原理图

    图  2  紧磁滞回线数值仿真结果

    图  3  fm变化的紧磁滞回线非对称度演化情况

    图  4  无感忆阻蔡氏电路原理图

    图  5  系统式(7)的典型混沌吸引子

    图  6  3组不同稳定模态吸引子随m的演化情况

    图  7  由曲线交点获得的平衡点及不同m时平衡点E2位置的演化

    图  8  与参数a3相关的分岔图和李雅普诺夫指数谱

    图  9  不同参数m时系统式(7)的吸引盆与共存吸引子

    图  10  不同参数m时系统式(7)的共存吸引子

    图  11  硬件实验捕获的典型混沌吸引子

    图  12  实验捕获的3组不同稳定模态吸引子随m的演化情况(横轴变量均为v3,纵轴变量均为v1)

    表  1  m取不同值时的系统平衡点稳定性

    m平衡点特征根稳定性
    1, 4, 8, 16E0 = (0, 0, 0, 0)9.329, –1.346±28.225i, –12.000不稳定指数1鞍焦
    1, 4, 8, 16E1 = (–1.419, –1.419, –12.769, 0.878)–488.920, –10.900, 1.11±27.73i不稳定指数2鞍焦
    1E2, 1 = (1.419, 1.419, 12.769, 0.878)–488.920, –10.900, 1.11±27.73i,不稳定指数2鞍焦
    4E2, 4 = (1.237, 1.237, 11.133, 0.766)–421.800, –10.890, 1.13±27.70i不稳定指数2鞍焦
    8E2, 8 = (1.145, 1.145, 10.306, 0.709)–388.170, –10.870, 1.14±27.68i不稳定指数2鞍焦
    16E2, 16 = (1.052, 1.052, 9.470, 0.651)–353.930, –10.860, 1.16±27.66i不稳定指数2鞍焦
    下载: 导出CSV
  • [1] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [2] MINATI L, GAMBUZZA L V, THIO W J, et al. A chaotic circuit based on a physical memristor[J]. Chaos, Solitons & Fractals, 2020, 138: 109990. doi: 10.1016/j.chaos.2020.109990
    [3] XIA Xiaozhu, ZENG Yicheng, and LI Zhijun. Coexisting multiscroll hyperchaotic attractors generated from a novel memristive jerk system[J]. Pramana, 2018, 91(6): 82. doi: 10.1007/s12043-018-1657-3
    [4] DONG Yujiao, WANG Guangyi, CHEN Guanrong, et al. A bistable nonvolatile locally-active memristor and its complex dynamics[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105203. doi: 10.1016/j.cnsns.2020.105203
    [5] ASCOLI A, TETZLAFF R, CORINTO F, et al. PSpice switch-based versatile memristor model[C] 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013: 205–208. doi: 10.1109/ISCAS.2013.6571818.
    [6] BAO Bocheng, YU Jingjing, HU Fengwei, et al. Generalized memristor consisting of diode bridge with first order parallel RC filter[J]. International Journal of Bifurcation and Chaos, 2014, 24(11): 1450143. doi: 10.1142/S0218127414501430
    [7] DENG Yue and LI Yuxia. A memristive conservative chaotic circuit consisting of a memristor and a capacitor[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(1): 013120. doi: 10.1063/1.5128384
    [8] AN Hongyu, LI Jialing, LI Ying, et al. Three dimensional memristor-based neuromorphic computing system and its application to cloud robotics[J]. Computers & Electrical Engineering, 2017, 63: 99–113. doi: 10.1016/j.compeleceng.2017.06.023
    [9] 王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    [10] YAO Peng, WU Huaqiang, GAO Bin, et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 2020, 577(7792): 641–646. doi: 10.1038/s41586-020-1942-4
    [11] 董哲康, 杜晨杰, 林辉品, 等. 基于多通道忆阻脉冲耦合神经网络的多帧图像超分辨率重建算法[J]. 电子与信息学报, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868

    DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868
    [12] 闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178

    MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178
    [13] SHI Qingyu, HUANG Xia, YUAN Fang, et al. Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation[J]. Chinese Physics B, 2021, 30(2): 020507. doi: 10.1088/1674-1056/abd74c
    [14] WANG Guangyi, YUAN Fang, CHEN Guanrong, et al. Coexisting multiple attractors and riddled basins of a memristive system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(1): 013125. doi: 10.1063/1.5004001
    [15] ZHANG Sen, ZHENG Jiahao, WANG Xiaoping, et al. Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network[J]. Nonlinear Dynamics, 2020, 102(4): 2821–2841. doi: 10.1007/s11071-020-06072-w
    [16] BAO Bocheng, WU Pingye, BAO Han, et al. Chaotic bursting in memristive diode bridge-coupled Sallen-Key lowpass filter[J]. Electronics Letters, 2017, 53(16): 1104–1105. doi: 10.1049/el.2017.1647
    [17] 李芳苑, 陈墨, 武花干. 忆阻高通滤波电路准周期与混沌环面簇发振荡及慢通道效应[J]. 电子与信息学报, 2020, 42(4): 811–817. doi: 10.11999/JEIT190373

    LI Fangyuan, CHEN Mo, and WU Huagan. Quasi-periodic, chaotic-torus bursting oscillations and slow passage effect in memristive high-pass filter circuit[J]. Journal of Electronics &Information Technology, 2020, 42(4): 811–817. doi: 10.11999/JEIT190373
    [18] CHANG Hui, LI Yuxia, and CHEN Guanrong. A novel memristor-based dynamical system with multi-wing attractors and symmetric periodic bursting[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(4): 043110. doi: 10.1063/1.5129557
    [19] CHEN Mo, REN Xue, WU Huagan, et al. Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(12): 1706–1716. doi: 10.1631/FITEE.1900360
    [20] WU Huagan, YE Yi, CHEN Mo, et al. Periodically switched memristor initial boosting behaviors in memristive hypogenetic jerk system[J]. IEEE Access, 2019, 7: 145022–145029. doi: 10.1109/ACCESS.2019.2945754
    [21] CHUA L. If it’s pinched it’s a memristor[J]. Semiconductor Science and Technology, 2014, 29(10): 104001. doi: 10.1088/0268-1242/29/10/104001
    [22] YE Yi, ZHOU Jie, XU Quan, et al. Parallel-type asymmetric memristive diode-bridge emulator and its induced asymmetric attractor[J]. IEEE Access, 2020, 8: 156299–156307. doi: 10.1109/ACCESS.2020.3018728
    [23] HU Weipeng, WANG Zhen, ZHAO Yunping, et al. Symmetry breaking of infinite-dimensional dynamic system[J]. Applied Mathematics Letters, 2020, 103: 106207. doi: 10.1016/j.aml.2019.106207
    [24] KENGNE L K, KENGNE J, PONE J R M, et al. Dynamics, control and symmetry breaking aspects of an infinite-equilibrium chaotic system[J]. International Journal of Dynamics and Control, 2020, 8(3): 741–758. doi: 10.1007/s40435-020-00613-2
    [25] XU Quan, SONG Zhe, QIAN Hui, et al. Numerical analyses and breadboard experiments of twin attractors in two-neuron-based non-autonomous Hopfield neural network[J]. The European Physical Journal Special Topics, 2018, 227(7): 777–786. doi: 10.1140/epjst/e2018-700122-3
    [26] RAJAGOPAL K, JAFARI S, PHAM V T, et al. Antimonotonicity, bifurcation and multistability in the vallis model for El Niño[J]. International Journal of Bifurcation and Chaos, 2019, 29(3): 1950032. doi: 10.1142/S0218127419500329
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1005
  • HTML全文浏览量:  319
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-06-30
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回