高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无证书的格基代理签密方案

俞惠芳 王宁

俞惠芳, 王宁. 基于无证书的格基代理签密方案[J]. 电子与信息学报, 2022, 44(7): 2584-2591. doi: 10.11999/JEIT210300
引用本文: 俞惠芳, 王宁. 基于无证书的格基代理签密方案[J]. 电子与信息学报, 2022, 44(7): 2584-2591. doi: 10.11999/JEIT210300
YU Huifang, WANG Ning. Certificateless Proxy Signcryption Scheme from Lattice[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2584-2591. doi: 10.11999/JEIT210300
Citation: YU Huifang, WANG Ning. Certificateless Proxy Signcryption Scheme from Lattice[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2584-2591. doi: 10.11999/JEIT210300

基于无证书的格基代理签密方案

doi: 10.11999/JEIT210300
基金项目: 陕西省自然科学基金基础研究计划重点项目(2020JZ-54)
详细信息
    作者简介:

    俞惠芳:女,1972年生,博士,教授,研究方向为密码理论与信息安全

    王宁:男,1996年生,硕士生,研究方向为格密码理论与网络编码密码理论

    通讯作者:

    俞惠芳 yuhuifang@xupt.edu.cn

  • 中图分类号: TN918; TP309

Certificateless Proxy Signcryption Scheme from Lattice

Funds: The Key Project of Basic Research Program of Natural Science Foundation of Shannxi Province (2020JZ-54)
  • 摘要: 无证书代理签密在信息安全领域发挥着越来越重要的作用。现有的大多数无证书代理签密基于传统数学理论,无法抵制量子计算攻击。该文采用格密码技术提出基于无证书的格基代理签密(L-CLPSC)方案。L-CLPSC在带错误学习(LWE)问题和小整数解(SIS)问题的困难假设下满足自适应选择密文攻击下的不可区分性和自适应选择消息攻击下的不可伪造性。相比较而言,L-CLPSC具有更高的计算效率和更低的通信代价。
  • 图  1  各方案耗时比较图

    表  1  实验参数的设置

    参数设置号
    123456
    n128136192214256320
    m281629924608599261447680
    q2048204840961638440964096
    下载: 导出CSV

    表  2  方案之间在空间维度比较

    方案公钥大小私钥大小密文长度
    方案[15]3n2log2q6n3log2qlog2n12n2log2nlog2q
    方案[16]m(1+n)log2q2n2klog2q2knlog2q
    L-CLPSCnklog2qmklog2q2nlog2q
    下载: 导出CSV

    表  3  方案之间在时间维度比较

    方案签密运算量解签密运算量方案整体运算量
    方案[15]ST+5SD+6MvST+5Mv2ST+6SD+13Mv
    方案[16]6SD+6Mv4MvST+6SD+13Mv
    L-CLPSC4SD+4Mv3MvST+4SD+8Mv
    下载: 导出CSV
  • [1] SHAMIR A. Identity-based cryptosystems and signature schemes[C]. CRYPTO 84 on Advances in Cryptology, Santa Barbara, USA, 1984: 47–53.
    [2] AL-RIYAMI S S and PATERSON K G. Certificateless public key cryptography[C]. The 9th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, China, 2003: 452–473.
    [3] YU Huifang and WANG Zhicang. Construction of certificateless proxy signcryption scheme from CMGs[J]. IEEE Access, 2019, 7: 141910–141919. doi: 10.1109/ACCESS.2019.2943718
    [4] SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]. The 35th Annual Symposium on Foundations of Computer Science, Santa Fe, USA, 1994: 124–134.
    [5] GENTRY C. Fully homomorphic encryption using ideal lattices[C]. Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 169–178.
    [6] 夏峰, 杨波, 马莎, 等. 基于格的代理签名方案[J]. 湖南大学学报:自然科学版, 2011, 38(6): 84–88.

    XIA Feng, YANG Bo, MA Sha, et al. Lattice-based proxy signature scheme[J]. Journal of Hunan University:Natural Sciences, 2011, 38(6): 84–88.
    [7] 江明明, 胡予濮, 王保仓, 等. 格上的高效代理签名[J]. 北京邮电大学学报, 2014, 37(3): 89–92. doi: 10.13190/j.jbupt.2014.03.018

    JIANG Mingming, HU Yupu, WANG Baocang, et al. Efficient proxy signature over lattices[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(3): 89–92. doi: 10.13190/j.jbupt.2014.03.018
    [8] 陈虎, 胡予濮, 连至助, 等. 有效的格上无证书加密方案[J]. 软件学报, 2016, 27(11): 2884–2897. doi: 10.13328/j.cnki.jos.004884

    CHEN Hu, HU Yupu, LIAN Zhizhu, et al. Efficient certificateless encryption schemes from lattices[J]. Journal of Software, 2016, 27(11): 2884–2897. doi: 10.13328/j.cnki.jos.004884
    [9] 路秀华, 温巧燕, 王励成, 等. 无陷门格基签密方案[J]. 电子与信息学报, 2016, 38(9): 2287–2293. doi: 10.11999/JEIT151044

    LU Xiuhua, WEN Qiaoyan, WANG Licheng, et al. A lattice-based signcryption scheme without trapdoors[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2287–2293. doi: 10.11999/JEIT151044
    [10] 欧海文, 范祯, 蔡斌思, 等. 理想格上基于身份的代理签名[J]. 计算机应用与软件, 2018, 35(1): 312–317. doi: 10.3969/j.issn.1000-386x.2018.01.054

    OU Haiwen, FAN Zhen, CAI Binsi, et al. Identity-based proxy signature scheme over ideal lattices[J]. Computer Applications and Software, 2018, 35(1): 312–317. doi: 10.3969/j.issn.1000-386x.2018.01.054
    [11] GENTRY C, PEIKERT C, and VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]. The 40th Annual ACM Symposium on Theory of Computing, Victoria, Canada, 2008: 197–206.
    [12] MICCIANCIO D and REGEV O. Worst-case to average-case reductions based on Gaussian measures[J]. SIAM Journal on Computing, 2007, 37(1): 267–302. doi: 10.1137/S0097539705447360
    [13] LYUBASHEVSKY V. Lattice signatures without trapdoors[C]. The 31st Annual International Conference on Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012: 738–755.
    [14] 俞惠芳, 杨波. 可证安全的无证书混合签密[J]. 计算机学报, 2015, 38(4): 804–813.

    YU Huifang and YANG Bo. Provably secure certificateless hybrid signcryption[J]. Chinese Journal of Computers, 2015, 38(4): 804–813.
    [15] SATO S and SHIKATA J. Lattice-based signcryption without random oracle[C]. The 9th International Conference on Post- Quantum Cryptography, Fort Lauderdale, USA, 2018: 331–351.
    [16] YU Huifang, BAI Lu, HAO Ming, et al. Certificateless signcryption scheme from lattice[J]. IEEE Systems Journal, 2021, 15(2): 2687–2695. doi: 10.1109/JSYST.2020.3007519
    [17] LINDNER R and PEIKERT C. Better key sizes (and attacks) for LWE-based encryption[C]. The Cryptographers' Track at the RSA Conference on Topics in Cryptology, San Francisco, USA, 2011: 319–339.
    [18] MICCIANCIO D and PEIKERT C. Trapdoors for lattices: Simpler, tighter, faster, smaller[C]. The 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012: 700–718.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  242
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2022-03-27
  • 录用日期:  2022-04-14
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回