高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免调度非正交多址接入上行链路的非2幂次长度二元扩频序列

李玉博 王亚会 于丽欣 刘凯

李玉博, 王亚会, 于丽欣, 刘凯. 免调度非正交多址接入上行链路的非2幂次长度二元扩频序列[J]. 电子与信息学报, 2022, 44(4): 1402-1411. doi: 10.11999/JEIT210293
引用本文: 李玉博, 王亚会, 于丽欣, 刘凯. 免调度非正交多址接入上行链路的非2幂次长度二元扩频序列[J]. 电子与信息学报, 2022, 44(4): 1402-1411. doi: 10.11999/JEIT210293
LI Yubo, WANG Yahui, YU Lixin, LIU Kai. Binary Spreading Sequences of Lengths Non-Power-of-Two for Uplink Grant-Free Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1402-1411. doi: 10.11999/JEIT210293
Citation: LI Yubo, WANG Yahui, YU Lixin, LIU Kai. Binary Spreading Sequences of Lengths Non-Power-of-Two for Uplink Grant-Free Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1402-1411. doi: 10.11999/JEIT210293

免调度非正交多址接入上行链路的非2幂次长度二元扩频序列

doi: 10.11999/JEIT210293
基金项目: 河北省自然科学基金(F2020203043, F2021203040),河北省高等学校科学技术研究项目(ZD2020179, ZD2021105)
详细信息
    作者简介:

    李玉博:男,1985年生,副教授,硕士生导师,研究方向为压缩感知技术,序列设计与编码理论

    王亚会:女,1999年生,硕士生,研究方向为免调度NOMA扩频序列设计

    于丽欣:女,1998年生,硕士生,研究方向为扩频序列设计

    刘凯:女,1977年生,副教授,硕士生导师,研究方向为扩频序列设计

    通讯作者:

    李玉博 liyubo6316@ysu.edu.cn

  • 中图分类号: TN914.42

Binary Spreading Sequences of Lengths Non-Power-of-Two for Uplink Grant-Free Non-Orthogonal Multiple Access

Funds: The Natural Science Foundation of Hebei Province(F2020203043, F2021203040), The Science and Technology Research Project of Colleges and Universities in Hebei Province (ZD2020179, ZD2021105)
  • 摘要: 为了解决5G大规模机器类通信场景下大规模接入和如何提高频谱效率的问题,该文针对免调度非正交多址接入(NOMA)系统上行链路,通过采用插入函数在2元Golay序列上插入元素的方法,提出具有低峰均功率比(PAPR)且长度为非2幂次的2元扩频序列集。仿真结果表明,得到的序列集具有低相干性,这为基于压缩感知的活跃用户检测提供了可靠的性能。同传统的Zadoff-Chu序列相比,新型2元序列集具有更小的字符集,便于实现。此外,所构造的序列PAPR最大为4,低于高斯随机序列和Zadoff-Chu序列,因此可以有效解决时域信号峰均功率比过高的问题。
  • 图  1  上行免调度NOMA的系统模型[21]

    图  2  $ M{\text{ = }}129 $时(${M_{{\rm{zc}}}} = 127$)每个设备的SNR上的基于CS的CE和MUD的性能

    图  3  $ M{\text{ = }}130 $时(${M_{{\rm{zc}}}} = 131$)每个设备的SNR上的基于CS的CE和MUD的性能

    图  4  $ M{\text{ = }}129 $时(${M_{{\rm{zc}}}} = 127$)用户过载因子L上的基于CS的CE和MUD的性能

    图  5  $ M{\text{ = }}130 $时(${M_{{\rm{zc}}}} = 131$)用户过载因子L上的基于CS的CE和MUD的性能

    图  6  $ M{\text{ = }}129 $时(${M_{{\rm{zc}}}} = 127$)活跃概率Pa上的基于CS的CE和MUD的性能

    图  7  $ M{\text{ = 130}} $时(${M_{{\rm{zc}}}} = 131$)活跃概率Pa上的基于CS的CE和MUD的性能

    表  1  使${{\boldsymbol{\varPhi}} '}$达到最优的置换集

    $ {M'}{\text{ = }}{{\text{2}}^m} $用户过载因子相干值置换集$\varGamma$
    32$ 2 \le L \le 8 $0.25$(5,4,3,2,1),(3,4,2,5,1),(4,2,5,3,1),(4,3,5,1,2),(4,5,1,3,2),(5,3,1,4,2),(5,4,2,1,3),(4,1,2,5,3)$
    64$ 2 \le L \le 5 $0.125$(3,4,5,2,6,1),(6,3,2,4,1,5),(4,1,6,5,2,3),(6,5,3,1,2,4),(5,3,2,1,6,4)$
    128$ 2 \le L \le 8 $0.125$\begin{array}{l} {\text{(4,5,1,3,6,7,2),(4,2,5,1,6,7,3),(6,7,1,2,3,5,4),(5,3,6,4,1,7,2),(6,4,7,3,1,5,2),(4,3,6,7,5,2,1),} } \\ {\text{(6,1,3,2,7,4,5),(6,7,5,1,4,3,2)} } \\ \end{array}$
    256$ 2 \le L \le 5 $0.0625${\text{(4,5,6,1,3,7,8,2),(7,6,8,2,3,1,4,5),(7,1,8,6,4,3,5,2),(6,7,2,3,8,4,1,5),(8,3,1,5,2,7,4,6)} }$
    512$ 2 \le L \le 8 $0.0625$\begin{array}{l} {\text{(8,3,7,4,9,2,5,1,6),(8,4,3,7,2,6,1,9,5),(9,5,4,1,6,8,3,7,2),(6,5,8,7,9,3,4,2,1),} } \\ {\text{(4,1,7,6,8,9,2,5,3),(4,8,2,6,9,7,5,3,1),(5,3,7,8,2,1,6,9,4),(5,6,9,3,7,1,8,2,4)} } \\ \end{array}$
    1024$ 2 \le L \le 5 $0.03125$\begin{array}{l} {\text{(9,1,6,3,2,8,5,4,10,7),(5,1,9,8,2,10,6,3,7,4),(6,3,8,10,9,7,1,5,4,2),(7,6,8,1,3,2,10,9,4,5),} } \\ {\text{(9,5,3,2,4,8,6,10,7,1)} } \\ \end{array}$
    下载: 导出CSV

    表  2  扩频矩阵相干值$\mu ({\boldsymbol{\varPhi}} )$

    扩频矩阵序列长度$\mu ({\boldsymbol{\varPhi} } )$扩频矩阵序列长度$\mu ({\boldsymbol{\varPhi} } )$扩频矩阵序列长度$\mu ({\boldsymbol{\varPhi } })$扩频矩阵序列长度$\mu ({\boldsymbol{\varPhi } })$
    本文330.2727本文340.2941文献[16]320.2500基于ZC序列310.1796
    650.1385660.1515640.1250610.1280
    1290.13181300.13851280.12501270.0887
    2570.06612580.06982560.06252570.0624
    5130.06435140.06615120.06255090.0443
    10250.032210260.033110240.0312510210.0313
    下载: 导出CSV

    表  3  扩频矩阵里序列的最大PAPR

    扩频矩阵序列长度PAPR扩频矩阵序列长度PAPR扩频矩阵序列长度PAPR扩频矩阵序列长度PAPR
    本文332.4545本文342.9412文献[16]322.0000基于ZC序列314.4066
    652.2825662.6172641.9928614.0922
    1292.24031302.49231282.00001274.3376
    2572.16992582.32652561.99782574.7396
    5132.12285142.24905122.00005094.8785
    10252.083410262.171310241.999310215.2751
    下载: 导出CSV

    表  4  几种确定性扩频矩阵的参数

    扩频矩阵扩频序列长度$ M $$\mu ({\boldsymbol{\varPhi} } )$PAPR上界字符集大小
    文献[16]$ {2^m} $$\sqrt{{1}/{ {2}^{m\text{-1} } } },\;\;m{\text{为奇数} }$
    $\sqrt{{1}/{ {2}^{m} } },\;m{\text{为偶数} }$
    22
    基于ZC序列$ {M_{{\text{zc}}}} $为任意素数$\sqrt {{1}/{ { {M_{ {\text{zc} } } } } } }$>4$ {M_{{\text{zc}}}} $
    本文$ {2^m}{\text{ + }}1 $$\dfrac{\sqrt{ {2}^{m+1} }+1}{ {2}^{m}+1},\;m{\text{为奇数} }$
    $\dfrac{\sqrt{ {2}^{m} }+1}{ {2}^{m}+1},\;m{\text{为偶数} }$
    42
    本文$ {2^m}{\text{ + 2}} $$ \dfrac{\sqrt{{2}^{m+1}}+2}{{2}^{m}+2},m{\text{为奇数}} $,$ \dfrac{\sqrt{{2}^{m}}+2}{{2}^{m}+2},m{\text{为偶数}} $42
    下载: 导出CSV
  • [1] 戴维佳. mMTC非正交多址接入中的活跃用户检测和信道估计[D]. [硕士论文], 中国科学技术大学, 2019.

    DAI Weijia. Active user detection and channel estimation in Non-orthogonal multiple access of mMTC[D]. [Master dissertation], University of Science and Technology of China, 2019.
    [2] 王茜竹, 方冬, 吴广富. 基于改进稀疏度自适应匹配算法的免授权非正交多址接入上行传输多用户检测[J]. 电子与信息学报, 2020, 42(9): 2216–2222. doi: 10.11999/JEIT190505

    WANG Qianzhu, FANG Dong, and WU Guangfu. Multi-user detection based on sparsity adaptive matching pursuit compressive sensing for uplink grant-free non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2216–2222. doi: 10.11999/JEIT190505
    [3] TALEB T and KUNZ A. Machine type communications in 3GPP networks: Potential, challenges, and solutions[J]. IEEE Communications Magazine, 2012, 50(3): 178–184. doi: 10.1109/MCOM.2012.6163599
    [4] SHAHAB M B, ABBAS R, SHIRVANIMOGHADDAM M, et al. Grant-free non-orthogonal multiple access for IoT: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1805–1838. doi: 10.1109/COMST.2020.2996032
    [5] 戴维佳, 李乐天, 周武旸. 基于期望传播的活跃用户检测和信道估计[J]. 中国科学技术大学学报, 2019, 49(10): 797–804, 819. doi: 10.3969/j.issn.0253-2778.2019.10.004

    DAI Weijia, LI Letian, and ZHOU Wuyang. Active user detection and channel estimation based on expectation propagation[J]. Journal of University of Science and Technology of China, 2019, 49(10): 797–804, 819. doi: 10.3969/j.issn.0253-2778.2019.10.004
    [6] DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519
    [7] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [8] CAI Donghong, WEN Jinming, FAN Pingzhi, et al. Active user and data detection for uplink grant-free NOMA systems[J]. China Communications, 2020, 17(11): 12–28. doi: 10.23919/JCC.2020.11.002
    [9] HOSOKAWA S, TEO K, OHNO S, et al. Pilot tone design with low peak-to-average power ratio in OFDM[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2005, E88-A(8): 2117–2123. doi: 10.1093/ietfec/e88-a.8.2117
    [10] LIU Liang, LARSSON E G, YU Wei, et al. Sparse signal processing for grant-free massive connectivity: A future paradigm for random access protocols in the internet of things[J]. IEEE Signal Processing Magazine, 2018, 35(5): 88–99. doi: 10.1109/MSP.2018.2844952
    [11] CHEN Huan, FAN Pingzhi, and LI Li. Active users detection based on deterministic sequences for massive connectivity[C]. 2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA), Dongguan, China, 2019: 1–5. doi: 10.1109/IWSDA46143.2019.8966106.
    [12] YANG K, KIM Y K, and KUMAR P V. Quasi-orthogonal sequences for code-division multiple-access systems[J]. IEEE Transactions on Information Theory, 2000, 46(3): 982–993. doi: 10.1109/18.841175
    [13] WEN Yang, HUANG Wei, and ZHANG Zhongpei. CAZAC sequence and its application in LTE random access[C]. 2006 IEEE Information Theory Workshop - ITW '06 Chengdu, Chengdu, China, 2006: 544–547. doi: 10.1109/ITW2.2006.323692.
    [14] LI Zhen, SUN Teng, LU Guangyue, et al. Preamble design and detection for 5G enabled satellite random access[J]. IEEE Access, 2020, 8: 49873–49884. doi: 10.1109/ACCESS.2020.2979871
    [15] PITAVAL R A, POPOVIĆB M, WANG Peng, et al. Overcoming 5G PRACH capacity shortfall: Supersets of Zadoff–Chu sequences with low-correlation zone[J]. IEEE Transactions on Communications, 2020, 68(9): 5673–5688. doi: 10.1109/TCOMM.2020.3003664
    [16] YU N Y. Binary Golay spreading sequences and reed-Muller codes for uplink grant-free NOMA[J]. IEEE Transactions on Communications, 2021, 69(1): 276–290. doi: 10.1109/TCOMM.2020.3031613
    [17] ADHIKARY A R and MAJHI S. New constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Communications Letters, 2019, 23(7): 1119–1122. doi: 10.1109/LCOMM.2019.2913382
    [18] LIU Zilong, PARAMPALLI U, and GUAN Yongliang, et al. Optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5768–5781. doi: 10.1109/TIT.2014.2335731
    [19] ADHIKARY A R, MAJHI S, LIU Zilong, et al. New sets of even-length binary Z-complementary pairs with asymptotic ZCZ ratio of 3/4[J]. IEEE Signal Processing Letters, 2018, 25(7): 970–973. doi: 10.1109/LSP.2018.2834143
    [20] DAVIS J A and JEDWAB J. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2397–2417. doi: 10.1109/18.796380
    [21] AHN J, SHIM B, and LEE K B. EP-based joint active user detection and channel estimation for massive machine-type communications[J]. IEEE Transactions on Communications, 2019, 67(7): 5178–5189. doi: 10.1109/TCOMM.2019.2907853
    [22] 3GPP. 3GPP TS-36.211 V13. 2.0 3rd Generation partnership project; technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); physical channels and modulation[S]. France: 3GPP, 2016.
    [23] WANG Bichai, DAI Linglong, MIR T, et al. Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016, 20(7): 1473–1476. doi: 10.1109/LCOMM.2016.2560180
    [24] DU Yang, DONG Binhong, ZHU Wuyong, et al. Joint channel estimation and multiuser detection for uplink grant-free NOMA[J]. IEEE Wireless Communications Letters, 2018, 7(4): 682–685. doi: 10.1109/LWC.2018.2810278
    [25] TROPP J A, GILBERT A C, and STRAUSS M J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit[J]. Signal Processing, 2006, 86(3): 572–588. doi: 10.1016/j.sigpro.2005.05.030
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1299
  • HTML全文浏览量:  510
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 修回日期:  2021-08-24
  • 网络出版日期:  2021-09-08
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回