高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交多用户CD-DCSK方案的设计及性能分析

贺利芳 董江涛 张刚

贺利芳, 董江涛, 张刚. 正交多用户CD-DCSK方案的设计及性能分析[J]. 电子与信息学报, 2022, 44(5): 1828-1838. doi: 10.11999/JEIT210263
引用本文: 贺利芳, 董江涛, 张刚. 正交多用户CD-DCSK方案的设计及性能分析[J]. 电子与信息学报, 2022, 44(5): 1828-1838. doi: 10.11999/JEIT210263
HE Lifang, DONG Jiangtao, ZHANG Gang. Design and Performance Analysis of Orthogonal Multi-User CD-DCSK Scheme[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1828-1838. doi: 10.11999/JEIT210263
Citation: HE Lifang, DONG Jiangtao, ZHANG Gang. Design and Performance Analysis of Orthogonal Multi-User CD-DCSK Scheme[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1828-1838. doi: 10.11999/JEIT210263

正交多用户CD-DCSK方案的设计及性能分析

doi: 10.11999/JEIT210263
基金项目: 国家自然科学基金(61771085),重庆市教育委员会科研项目(KJ1600407,KJQN201900601)
详细信息
    作者简介:

    贺利芳:女,1979年生,硕士,副教授,研究方向为混沌保密通信、微弱信号检测

    董江涛:男,1997年生,硕士生,研究方向为混沌保密通信

    张刚:男,1976年生,博士,教授,研究方向为混沌同步、混沌保密通信

    通讯作者:

    董江涛 598219244@qq.com

  • 中图分类号: TN911.3

Design and Performance Analysis of Orthogonal Multi-User CD-DCSK Scheme

Funds: The National Natural Science Foundation of China (61771085), The Research Project of Chongqing Educational Commission (KJ1600407, KJQN201900601)
  • 摘要: 为了进一步提升现有多用户混沌键控系统的信息传输速率和误码率(BER) 性能,该文提出一种正交多用户CD-DCSK(OMU-CD-DCSK)系统。该系统在差分混沌移位键控(DCSK)的基础上结合了相关延迟移位键控(CDSK),每个时隙中利用正交的Walsh码序列可以传输N bit的多用户信息,然后通过正交调制技术进一步提升传输速率。在接收端,采用滑动平均滤波器降低噪声方差,改善误码性能,之后进行相关解调即可恢复多用户信息比特。推导了多径瑞利衰落信道下系统的理论BER,并通过蒙特卡罗仿真实验进行了验证。此外,还定义了系统的综合效用,用于评估混沌系统的综合性能。与其他混沌键控系统相比,OMU-CD-DCSK的综合性能有明显优势,因此具有较好的实用价值。
  • 图  1  OMU-CD-DCSK系统发送端

    图  2  OMU-CD-DCSK系统接收端

    图  3  滑动平均滤波器原理

    图  4  多径瑞利衰落信道模型

    图  5  DCSK和OMU-CD-DCSK平方幅度谱

    图  6  不同扩频因子$ \beta $下系统BER曲线

    图  7  不同用户数N下系统BER曲线

    图  8  不同复制次数P下系统BER曲线

    图  9  P, $ \beta $和BER性能的3维关系图

    图  10  不同路径数L对系统BER曲线的影响

    图  11  不同系统之间BER比较

    图  12  不同系统的传输速率、能量效率比较

    图  13  不同系统的综合效用对比

  • [1] 蒋国平, 杨华, 段俊毅. 混沌数字调制方案及性能分析[M]. 北京: 科学出版社, 2015: 2–4.

    JIANG Guoping, YANG Hua, and DUAN Junyi. Chaotic Digital Modulation Scheme and Performance Analysis[M]. Beijing: Science Press, 2015: 2–4.
    [2] CHENG Guixian, WANG Lin, CHEN Qiwang, et al. Design and performance analysis of generalised carrier index M-ary differential chaos shift keying modulation[J]. IET Communications, 2018, 12(11): 1324–1331. doi: 10.1049/iet-com.2017.0800
    [3] KADDOUM G, TRAN H V, KONG Long, et al. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems[J]. IEEE Transactions on Communications, 2017, 65(1): 431–433. doi: 10.1109/tcomm.2016.2619707
    [4] 代红英, 徐位凯. MC-DCSK中的子载波功率分配优化算法[J]. 重庆邮电大学学报:自然科学版, 2015, 27(2): 170–173. doi: 10.3979/j.issn.1673-825X.2015.02.005

    DAI Hongying and XU Weikai. Optimal sub-carriers power allocation in MC-DCSK communication system[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2015, 27(2): 170–173. doi: 10.3979/j.issn.1673-825X.2015.02.005
    [5] LI Shuying, ZHAO Yaqin, and WU Zhilu. Design and analysis of an OFDM-based differential chaos shift keying communication system[J]. Journal of Communications, 2015, 10(3): 199–205. doi: 10.12720/jcm.10.3.199-205
    [6] LAU F C M and TSE C K. On optimal detection of noncoherent chaos-shift-keying signals in a noisy environment[J]. International Journal of Bifurcation and Chaos, 2003, 13(6): 1587–1597. doi: 10.1142/S0218127403007448
    [7] YANG Hua, TANG W K S, CHEN Guanrong, et al. Multi-carrier chaos shift keying: System design and performance analysis[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2017, 64(8): 2182–2194. doi: 10.1109/TCSI.2017.2685344
    [8] 杨华, 蒋国平, 段俊毅. 无信号内干扰的高效差分混沌键控通信方案[J]. 通信学报, 2015, 36(6): 88–93. doi: 10.11959/j.issn.1000-436x.2015150

    YANG Hua, JIANG Guoping, and DUAN Junyi. High efficiency differential chaos shift keying modulation scheme without intra-signal interference[J]. Journal on Communications, 2015, 36(6): 88–93. doi: 10.11959/j.issn.1000-436x.2015150
    [9] CHEN Pingping, WANG Lin, and LAU F C M. One analog STBC-DCSK transmission scheme not requiring channel state information[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(4): 1027–1037. doi: 10.1109/TCSI.2012.2209304
    [10] KADDOUM G and GAGNON F. Performance analysis of STBC-CSK communication system over slow fading channel[J]. Signal Processing, 2013, 93(7): 2055–2060. doi: 10.1016/j.sigpro.2012.12.020
    [11] HERCEG M, KADDOUM G, VRANJEŠ D, et al. Permutation index DCSK modulation technique for secure multiuser high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2997–3011. doi: 10.1109/TVT.2017.2774108
    [12] TAM W M, LAU F C M, and TSE C K. Generalized correlation-delay-shift-keying scheme for noncoherent chaos-based communication systems[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2006, 53(3): 712–721. doi: 10.1109/TCSI.2005.858323
    [13] RUSHFORTH C. Transmitted-reference techniques for random or unknown channels[J]. IEEE Transactions on Information Theory, 1964, 10(1): 39–42. doi: 10.1109/TIT.1964.1053641
    [14] YANG Hua and JIANG Guoping. High-efficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2012, 59(5): 312–316. doi: 10.1109/TCSII.2012.2190859
    [15] YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSII.2014.2356914
    [16] XU W K, WANG L, and KOLUMBÁN G. A novel differential chaos shift keying modulation scheme[J]. International Journal of Bifurcation and Chaos, 2011, 21(3): 799–814. doi: 10.1142/S0218127411028829
    [17] 贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117

    HE Lifang, CHEN Jun, and ZHANG Tianqi. Performance analysis of short reference multi-user differential chaos shift keying communication system[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117
    [18] 吴雪霜, 贺利芳, 张鹏. 正交多用户降噪差分混沌键控通信系统[J]. 西安交通大学学报, 2020, 54(10): 108–115.

    WU Xueshuang, HE Lifang, and ZHANG Peng. Differential chaotic shift keying system with orthogonal multiuser noise reduction[J]. Journal of Xian Jiaotong University, 2020, 54(10): 108–115.
    [19] LAU F C M, CHEONG K Y, and TSE C K. Permutation-based DCSK and multiple-access DCSK systems[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2003, 50(6): 733–742. doi: 10.1109/TCSI.2003.812616
    [20] 张公泉, 李晓辉, 陈晓婷, 等. 短参多进制保密差分混沌键控系统[J]. 系统工程与电子技术, 2020, 42(12): 2899–2905. doi: 10.3969/j.issn.1001-506X.2020.12.28

    ZHANG Gongquan, LI Xiaohui, CHEN Xiaoting, et al. Short-reference M-ary security differential chaos shift keying system[J]. Systems Engineering and Electronics, 2020, 42(12): 2899–2905. doi: 10.3969/j.issn.1001-506X.2020.12.28
    [21] ZHANG Gang, ZHAO Changchang, and ZHANG Tianqi. Performance analysis of MISO-MU-OHE-DCSK system over Rayleigh fading channels[J]. AEUE - International Journal of Electronics and Communications, 2019, 115: 153048. doi: 10.1016/j.aeue.2019.153048
  • 加载中
图(13)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  315
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 修回日期:  2021-11-11
  • 录用日期:  2021-11-11
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回