高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于基扩展模型的UKF-RTSS高可靠鲁棒V2V信道估计

廖勇 陈颖

廖勇, 陈颖. 基于基扩展模型的UKF-RTSS高可靠鲁棒V2V信道估计[J]. 电子与信息学报, 2022, 44(5): 1792-1799. doi: 10.11999/JEIT210239
引用本文: 廖勇, 陈颖. 基于基扩展模型的UKF-RTSS高可靠鲁棒V2V信道估计[J]. 电子与信息学报, 2022, 44(5): 1792-1799. doi: 10.11999/JEIT210239
LIAO Yong, CHEN Ying. Ultra-Reliable and Robust Channel Estimation Using Basis Expansion Model-Based UKF-RTSS Scheme for V2V Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1792-1799. doi: 10.11999/JEIT210239
Citation: LIAO Yong, CHEN Ying. Ultra-Reliable and Robust Channel Estimation Using Basis Expansion Model-Based UKF-RTSS Scheme for V2V Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1792-1799. doi: 10.11999/JEIT210239

基于基扩展模型的UKF-RTSS高可靠鲁棒V2V信道估计

doi: 10.11999/JEIT210239
基金项目: 国家自然科学基金(61501066),重庆市自然科学基金(cstc2019jcyj-msxmX0017)
详细信息
    作者简介:

    廖勇:男,1982年生,博士,副研究员,博士生导师,研究方向为下一代无线通信技术、高速移动通信系统及其关键技术、智能信号与信息处理

    陈颖:女,1996年生,硕士生,研究方向为车联网场景下的信道估计算法

    通讯作者:

    廖勇 liaoy@cqu.edu.cn

  • 中图分类号: TN911.7

Ultra-Reliable and Robust Channel Estimation Using Basis Expansion Model-Based UKF-RTSS Scheme for V2V Systems

Funds: The National Natural Science Foundation of China (61501066), The Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0017)
  • 摘要: 车联网应用场景对无线通信在带宽、时延、可靠性方面提出了更高的需求,特别是车辆对车辆(Vehicle to Vehicle, V2V)场景。针对V2V高速移动场景,时/频域选择性衰落(双选衰落)和非平稳特性给信道估计带来的技术挑战,该文提出了一种基于基扩展模型(Basis Expansion Model, BEM)的UKF-RTSS (Unscented Kalman Filter- Rauch-Tung-Striebel Smoother)信道估计方法。该方法采用BEM拟合快时变信道,将信道参数的估计转化为基函数系数的估计;通过无迹卡尔曼滤波(UKF),联合估计数据处信道冲激响应与时域自相关系数,用于追踪快时变的信道响应。为了进一步提升信道估计的精度,引入RTSS对后向信道状态信息进行信道估计和插值,与UKF构成了“滤波和平滑”结构的UKF-RTSS联合估计器。系统仿真分析表明,在不同速度的快时变条件下,所提方法相比其他经典方法具有更高的信道估计精度和鲁棒性,特别适用于车联网下的无线通信场景。
  • 图  1  基于BEM的UKF-RTSS信道估计方法结构

    图  2  观测矩阵获取流程图

    图  3  D=4时,不同BEM的模型误差

    图  4  Doppler=2732 Hz时,不同BEM的模型误差

    图  5  移动速度为30 km/h各算法的NMSE性能

    图  6  移动速度为500 km/h各算法的NMSE性能

    图  7  移动速度为30 km/h各算法的BER性能

    图  8  移动速度为500 km/h各算法的BER性能

    表  1  各种估计算法的复杂度对比

    估计算法时间复杂度
    LS$ O\left( N \right) $
    BEM-LS$ O\left( {{{\left( {DL} \right)}^2}N} \right) $
    BEM-iROMP[14]$ O\left( {{{\left( {DL} \right)}^2}N\lg S} \right) $
    BEM-LMMSE$ O\left( {{N^2}\left( {DL} \right)} \right) $
    BEM-LS-UKF$ O\left( {{N^2}\left( {DL} \right)} \right) $
    BEM-LMMSE-UKF$ O\left( {{N^2}\left( {DL} \right)} \right) $
    BEM-LS-UKF-RTSS$ O\left( {{N^2}\left( {DL} \right)} \right) $
    BEM-LMMSE-UKF-RTSS$ O\left( {{N^2}\left( {DL} \right)} \right) $
    下载: 导出CSV

    表  2  仿真系统参数

    参数数值
    载波频率5.9 GHz
    系统带宽10 MHz
    子载波数600
    子载波间隔
    FFT长度
    1024
    15 kHz
    基向量维数D4
    调制方式16QAM
    信道模型EVA
    多径抽头延迟(ns)[0 50 120 200 230 500 1600 2300 5000]
    相对功率时延(dB)[–1.0 –1.0 –1.0 0.0 0.0 0.0 –3.0 –5.0 –7.0]
    下载: 导出CSV
  • [1] ABBOUD K, OMAR H A, and ZHUANG Weihua. Interworking of DSRC and cellular network technologies for V2X communications: A survey[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9457–9470. doi: 10.1109/TVT.2016.2591558
    [2] ANWAR W, FRANCHI N, and FETTWEIS G. Physical layer evaluation of V2X communications technologies: 5G NR-V2X, LTE-V2X, IEEE 802.11bd, and IEEE 802.11p[C]. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, USA, 2019: 1–7. doi: 10.1109/VTCFall.2019.8891313.
    [3] CHEN Shanzhi, HU Jinling, SHI Yan, et al. LTE-V: A TD-LTE-based V2X solution for future vehicular network[J]. IEEE Internet of Things Journal, 2016, 3(6): 997–1005. doi: 10.1109/JIOT.2016.2611605
    [4] CHEN Shanzhi, HU Jinling, SHI Yan, et al. A Vision of C-V2X: Technologies, field testing, and challenges with Chinese development[J]. IEEE Internet of Things Journal, 2020, 7(5): 3872–3881. doi: 10.1109/JIOT.2020.2974823
    [5] CHEN Shanzhi, HU Jinling, SHI Yan, et al. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017, 1(2): 70–76. doi: 10.1109/MCOMSTD.2017.1700015
    [6] 陈维, 李源, 刘玮. 车联网产业进展及关键技术分析[J]. 中兴通讯技术, 2020, 26(1): 5–11. doi: 10.12142/ZTETJ.202001003

    CHEN Wei, LI Yuan, and LIU Wei. Industrial progress and key technologies of internet of vehicles[J]. ZTE Technology Journal, 2020, 26(1): 5–11. doi: 10.12142/ZTETJ.202001003
    [7] FARZAMNIA A, HLAING N W, HALDAR M K, et al. Channel estimation for sparse channel OFDM systems using least square and minimum mean square error techniques[C]. 2017 International Conference on Engineering and Technology (ICET), Antalya, USA, 2017: 1–5. doi: 10.1109/ICEngTechnol.2017.8308193.
    [8] ZARRINKOUB H. Understanding LTE with MATLAB: From Mathematical Modeling to Simulation and Prototyping[M]. Chichester: Wiley Publishing, 2014.
    [9] HRYCAK T, DAS S, MATZ G, et al. Practical estimation of rapidly varying channels for OFDM systems[J]. IEEE Transactions on Communications, 2011, 59(11): 3040–3048. doi: 10.1109/TCOMM.2011.082111.110075
    [10] ZAFARANI E, OMIDI M J, HEYDARYAN F, et al. Oversampled Legendre basis expansion model for doubly-selective channels[C]. 2011 19th Iranian Conference on Electrical Engineering, Tehran, Iran, 2011: 1–5.
    [11] BORAH D K and HART B T. Frequency-selective fading channel estimation with a polynomial time-varying channel model[J]. IEEE Transactions on Communications, 1999, 47(6): 862–873. doi: 10.1109/26.771343
    [12] TEO K A D and OHNO S. Optimal MMSE finite parameter model for doubly-selective channels[C]. GLOBECOM '05. IEEE Global Telecommunications Conference, 2005, St. Louis, USA, 2005: 3507. doi: 10.1109/GLOCOM.2005.1578424.
    [13] QU Huiyang, LIU Guanghui, WANG Yanyan, et al. A time-domain approach to channel estimation and equalization for the SC-FDM system[J]. IEEE Transactions on Broadcasting, 2019, 65(4): 713–726. doi: 10.1109/TBC.2019.2904849
    [14] 廖勇, 蔡志镕. 基于基扩展模型的改进正则化正交匹配追踪V2X快时变SC-FDMA信道估计[J]. 通信学报, 2021, 42(4): 177–184.

    LIAO Yong and CAI Zhirong. Basis expansion model-based improved regularized orthogonal matching pursuit channel estimation for V2X fast time-varying SC-FDMA[J]. Journal on Communications, 2021, 42(4): 177–184.
    [15] LIAO Yong, SHEN Xuanfan, DAI Xuewu, et al. EKF-based joint channel estimation and decoding design for non-stationary OFDM channel[C]. GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254544.
    [16] PEDROSA P, CASTANHEIRA D, SILVA A, et al. Efficient joint channel equalization and tracking for V2X communications using SC-FDE schemes[J]. IEEE Access, 2020, 8: 55158–55169. doi: 10.1109/ACCESS.2020.2981717
    [17] BADDOUR K E and BEAULIEU N C. Autoregressive modeling for fading channel simulation[J]. IEEE Transactions on Wireless Communications, 2005, 4(4): 1650–1662. doi: 10.1109/TWC.2005.850327
    [18] SARKKA S. Bayesian Filtering and Smoothing[M]. Cambridge: Cambridge University Press, 2013.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  760
  • HTML全文浏览量:  498
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-05-17
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回