Multi-UAV Regional Patrol Mission Planning Strategy
-
摘要: 目前应急搜索无人机(UAV)集群存在搜索效率低、覆盖完整性低、多机组网稳定性差等问题。对此,该文提出一种基于优化模糊C聚类算法(O-FCMA)结合优化混合粒子群算法(O-HPSO)的终端-路由UAV区域搜索任务规划策略。以UAV监测区域范围为基础,通过建立搜索区域的空间模型,进一步运用O-FCMA进行区域几何划分,并采用O-HPSO实现划分区域内的路径规划,以实现多UAV集群搜索总体任务的规划。仿真实验结果表明,采用O-HPSO结合O-FCMA进行无源UAV区域搜索任务较ACO或模拟退火算法结合K聚类算法或FCMA相比,在保证搜索区域全覆盖条件下,有源搜索与无源搜索过程中UAV决策时间分别降低了7%~21%和16%~31%,搜索效率分别提升了7%~13%和3%~7%。结果表明所提方法有效降低了UAV集群的决策时间,提升了搜索效率。Abstract: At present, the emergency search Unmanned Aerial Vehicle (UAV) cluster has problems such as low search efficiency, low coverage integrity, and poor stability of multi-unit network. In this regard, a terminal-routing UAV area search task planning strategy based on Optimized Fuzzy C-Means Algorithm (O-FCMA) combined with Optimize-Hybrid Particle Swarm Optimization (O-HPSO) algorithm is proposed. Based on the scope of UAV monitoring area, by establishing the spatial model of the search area, this paper further uses O-FCMA to divide the area geometrically, and uses O-HPSO to realize the path planning in the divided area, so as to realize the planning of the overall task of multi-UAV cluster search. The simulation experiment is performed. The use of O-HPSO combined with O-FCMA for passive UAV area search task is compared with ACO or simulated annealing algorithm combined with K clustering algorithm or FCMA, under the condition of ensuring the full coverage of the search area, active search compared with non-active UAV, the UAV decision time is reduced by 7%~21%, 16%~31%, and the search efficiency is increased by 7%~13%, 3%~7%. The method reduces effectively the UAV cluster decision time and improves the search efficiency.
-
表 1 总体方法中常数参数数值及说明
参数 说明 取值 $ v $ UAV行驶恒定速度 2.1 $ {v_r} $ 经过重复区域飞行速度 5.3 $ a $ 总体平均搜索效率权重 0.7 $ b $ 成功搜索UAV搜索效率权重 0.3 $ {\mu _1} $ 总计时间行驶距离权重 3.5 $ {\mu _2} $ 总计时间经过重复飞行区域权重 0.5 $ \alpha $ 适应度函数时间变量权重 0.1 $ \beta $ 适应度函数空间变量权重 0.9 $ \sigma $ 加入当前节点距离最近节点欧氏距离后的影响权重 0.06 $ \xi $ 搜索区域划分标准 0.1 表 2 有源搜索对比试验结果
算法名称 成功搜索UAV
距离(m)总搜索
效率算法寻优
时间(s)本文算法 106.1 0.93 38 ACO-K聚类算法 104.8 0.82 46 模拟退火算法 -K聚类算法 117.2 0.87 42 ACO-FCMA 104.4 0.85 41 模拟退火算法-FCMA 107.6 0.82 46 表 3 无源搜索对比试验结果
算法名称 UAV行驶距离 总搜索效率 算法寻优
时间(s)最大 最小 本文算法 156 70 0.95 42 ACO-K聚类算法 175 71 0.89 50 模拟退火算法 -K聚类算法 165 82 0.92 49 ACO-FCMA 170 75 0.91 55 模拟退火算法-FCMA 175 74 0.88 48 -
[1] 杨庆, 段海滨. 仿鸿雁编队的无人机集群飞行验证[J]. 工程科学学报, 2019, 41(12): 1599–1608.YANG Qing and DUAN Haibin. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides[J]. Chinese Journal of Engineering, 2019, 41(12): 1599–1608. [2] 李宪强, 马戎, 张伸, 等. 蚁群算法的改进设计及在航迹规划中的应用[J]. 航空学报, 2020, 41(S2): 724381.LI Xianqiang, MA Rong, ZHANG Shen, et al. Improved design of ant colony algorithm and its application in path planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724381. [3] 张小孟, 胡永江, 李文广, 等. 基于改进人工蜂群算法的多无人机灭火任务规划[J]. 中国惯性技术学报, 2020, 28(4): 528–536.ZHANG Xiaomeng, HU Yongjiang, LI Wenguang, et al. Multi-UAV fire fighting mission planning based on improved artificial bee colony algorithm[J]. Journal of Chinese Inertial Technology, 2020, 28(4): 528–536. [4] 吴坤, 谭劭昌. 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020, 41(S2): 724286.WU Kun and TAN Shaochang. UAV route planning based on improved whale optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724286. [5] 曹建秋, 张广言, 徐鹏. A*初始化的变异灰狼优化的无人机路径规划[J/OL]. 计算机工程与应用. http://kns.cnki.net/kcms/detail/11.2127.TP.20201225.0932.014.html, 2021.CAO Jianqiu, ZHANG Guangyan, and XU Peng. A* Initialized mutable gray wolf optimazer for UAV path planning[J/OL]. Computer Engineering and Applications. http://kns.cnki.net/kcms/detail/11.2127.TP.20201225.0932.014.html, 2021. [6] 范叶满, 沈楷程, 王东, 等. 基于模拟退火算法的无人机山地作业能耗最优路径规划[J]. 农业机械学报, 2020, 51(10): 34–41. doi: 10.6041/j.issn.1000-1298.2020.10.005FAN Yeman, SHEN Kaicheng, WANG Dong, et al. Optimal energy consumption path planning of UAV on mountain region based on simulated annealing algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 34–41. doi: 10.6041/j.issn.1000-1298.2020.10.005 [7] 张强, 陈兵奎, 刘小雍, 等. 基于改进势场蚁群算法的移动机器人最优路径规划[J]. 农业机械学报, 2019, 50(5): 23–32,42. doi: 10.6041/j.issn.1000-1298.2019.05.003ZHANG Qiang, CHEN Bingkui, LIU Xiaoyong, et al. Ant colony optimization with improved potential field heuristic for robot path planning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 23–32,42. doi: 10.6041/j.issn.1000-1298.2019.05.003 [8] 孙炜, 吕云峰, 唐宏伟, 等. 基于一种改进A*算法的移动机器人路径规划[J]. 湖南大学学报:自然科学版, 2017, 44(4): 94–101.SUN Wei, LÜ Yunfeng, TANG Hongwei, et al. Mobile robot path planning based on an improved A* algorithm[J]. Journal of Hunan University:Natural Sciences, 2017, 44(4): 94–101. [9] 孙亮, 王冰, 郭栋, 等. 求解不确定型车辆路径问题的弱鲁棒优化方法[J]. 国防科技大学学报, 2020, 42(3): 30–38. doi: 10.11887/j.cn.202003005SUN Liang, WANG Bing, GUO Dong, et al. Light robust optimization approach for vehicle routing problem under uncertainty[J]. Journal of National University of Defense Technology, 2020, 42(3): 30–38. doi: 10.11887/j.cn.202003005 [10] 毛新军, 杨硕, 黄裕泓, 等. 自主机器人多智能体软件架构及伴随行为机制[J]. 软件学报, 2020, 31(6): 1619–1637.MAO Xinjun, YANG Shuo, HUANG Yuhong, et al. Towards software architecture and accompanying behavior mechanism of autonomous robotic control software based on multi-agent system[J]. Journal of Software, 2020, 31(6): 1619–1637. [11] 孙鹏耀, 黄炎焱, 潘尧. 基于改进势场法的移动机器人路径规划[J]. 兵工学报, 2020, 41(10): 2106–2121. doi: 10.3969/j.issn.1000-1093.2020.10.021SUN Pengyao, HUANG Yanyan, and PAN Yao. Path planning of mobile robots based on improved potential field algorithm[J]. Acta Armamentarii, 2020, 41(10): 2106–2121. doi: 10.3969/j.issn.1000-1093.2020.10.021 [12] 华冰, 孙胜刚, 吴云华, 等. 基于CGAPIO的航天器编队重构路径规划方法[J]. 北京航空航天大学学报, 2021, 47(2): 223–230.HUA Bing, SUN Shenggang, WU Yunhua, et al. Path planning method for spacecraft formation reconfiguration based on CGAPIO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 223–230. [13] 蔺一帅, 李青山, 陆鹏浩, 等. 智能仓储货位规划与AGV路径规划协同优化算法[J]. 软件学报, 2020, 31(9): 2770–2784.LIN Yishuai, LI Qingshan, LU Penghao, et al. Shelf and AGV path cooperative optimization algorithm used in intelligent warehousing[J]. Journal of Software, 2020, 31(9): 2770–2784. [14] CHAN F T S, WANG Z X, GOSWAMI A, et al. Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations[J]. International Journal of Production Research, 2020, 58(7): 5155–5174. [15] KHAN Z, KOUBAA A, and FARMAN H. Smart route: Internet-of-Vehicles (IoV)-based Congestion Detection and avoidance (IoV-Based CDA) using rerouting planning[J]. Applied Sciences, 2020, 10(13): 4541. doi: 10.3390/app10134541