高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窃听者随机分布下智能反射面辅助的MISO系统物理层安全性能分析

杨杰 季新生 王飞虎 金梁 杨金梅

杨杰, 季新生, 王飞虎, 金梁, 杨金梅. 窃听者随机分布下智能反射面辅助的MISO系统物理层安全性能分析[J]. 电子与信息学报, 2022, 44(5): 1809-1818. doi: 10.11999/JEIT210209
引用本文: 杨杰, 季新生, 王飞虎, 金梁, 杨金梅. 窃听者随机分布下智能反射面辅助的MISO系统物理层安全性能分析[J]. 电子与信息学报, 2022, 44(5): 1809-1818. doi: 10.11999/JEIT210209
YANG Jie, JI Xinsheng, WANG Feihu, JIN Liang, YANG Jinmei. Performance Analysis of Physical Layer Security for IRS-aided MISO System with Randomly Distributed Eavesdropping Nodes[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1809-1818. doi: 10.11999/JEIT210209
Citation: YANG Jie, JI Xinsheng, WANG Feihu, JIN Liang, YANG Jinmei. Performance Analysis of Physical Layer Security for IRS-aided MISO System with Randomly Distributed Eavesdropping Nodes[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1809-1818. doi: 10.11999/JEIT210209

窃听者随机分布下智能反射面辅助的MISO系统物理层安全性能分析

doi: 10.11999/JEIT210209
基金项目: 国家自然科学基金(61871404),国家自然科学基金创新群体项目(61521003),重点院校和重点学科专业建设项目
详细信息
    作者简介:

    杨杰:男,1989年生,博士生,主要研究方向为移动通信安全等

    季新生:男,1968年生,教授,博士生导师,主要研究方向为无线通信安全等

    王飞虎:男,1992年生,硕士,研究实习员,研究方向为移动通信、通信信号处理等

    金梁:男,1969年生,教授,博士生导师,主要研究方向为移动通信安全等

    杨金梅:女,1982年生,硕士,助理研究员,主要研究方向为移动通信、通信信号处理等

    通讯作者:

    季新生 jxs_ndsc@126.com

  • 中图分类号: TN918; TN926

Performance Analysis of Physical Layer Security for IRS-aided MISO System with Randomly Distributed Eavesdropping Nodes

Funds: The National Natural Science Foundation of China (61871404), The National Natural Science Foundation Innovative Groups Project of China (61521003), The Key Universities and Academic Disciplines Contruction Project
  • 摘要: 针对窃听节点随机分布的MISO系统通信场景,该文分析了智能反射面(IRS)辅助下的安全通信性能。采用随机几何理论,将窃听节点建模为均匀泊松点过程(PPP)。合法发送节点采用天线选择策略,选择最优链路发射信号,并部署智能反射面实时调控反射相移增强链路质量,然后以传输安全中断概率为性能指标,推导了其闭式表达式,分析了反射单元数量、发射天线数量等参数对中断概率的影响,最后给出了最大化安全性能的参数选择策略。仿真结果验证了理论分析的正确性,并表明部署反射面可以在低能耗下提升安全性能。
  • 图  1  系统模型

    图  2  不同${d_{ar}}$下理论曲线与拟合曲线关系图

    图  3  TSOP随发送功率的变化

    图  4  TSOP随反射单元数量的变化

    图  5  TSOP随发射天线数量的变化

    图  6  TSOP随窃听分布密度的变化

  • [1] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6
    [2] 于宝泉, 蔡跃明, 胡健伟. 认知无线电非正交多址接入随机网络物理层安全性能分析[J]. 电子与信息学报, 2020, 42(4): 950–956. doi: 10.11999/JEIT190049

    YU Baoquan, CAI Yueming, and HU Jianwei. Performance analysis of physical layer security for cognitive radio non-orthogonal multiple access random network[J]. Journal of Electronics &Information Technology, 2020, 42(4): 950–956. doi: 10.11999/JEIT190049
    [3] 雷维嘉, 林秀珍, 杨小燕, 等. 利用人工噪声提高合法接收者性能的物理层安全方案[J]. 电子与信息学报, 2016, 38(11): 2887–2892. doi: 10.11999/JEIT160054

    LEI Weijia, LIN Xiuzhen, YANG Xiaoyan, et al. Physical layer security scheme exploiting artificial noise to improve the performance of legitimate user[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2887–2892. doi: 10.11999/JEIT160054
    [4] HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [5] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [6] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685
    [7] CHU Zheng, HAO Wanming, XIAO Pei, et al. Intelligent reflecting surface aided multi-antenna secure transmission[J]. IEEE Wireless Communications Letters, 2020, 9(1): 108–112. doi: 10.1109/LWC.2019.2943559
    [8] CHEN Jie, LIANG Yingchang, PEI Yiyang, et al. Intelligent reflecting surface: A programmable wireless environment for physical layer security[J]. IEEE Access, 2019, 7: 82599–82612. doi: 10.1109/ACCESS.2019.2924034
    [9] YU Xianghao, XU Dongfang, SUN Ying, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637–2652. doi: 10.1109/JSAC.2020.3007043
    [10] YANG Liang, YANG Jinxia, XIE Wenwu, et al. Secrecy performance analysis of RIS-aided wireless communication systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12296–12300. doi: 10.1109/TVT.2020.3007521
    [11] ZHANG Haiyang, HUANG Yongming, LI Chunguo, et al. Secure beamforming design for SWIPT in MISO broadcast channel with confidential messages and external eavesdroppers[J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7807–7819. doi: 10.1109/TWC.2016.2607705
    [12] CHEN Gaojie, COON J P, and DI RENZO M. Secrecy outage analysis for downlink transmissions in the presence of randomly located eavesdroppers[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(5): 1195–1206. doi: 10.1109/TIFS.2017.2656462
    [13] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629
    [14] GERACI G, SINGH S, ANDREWS J G, et al. Secrecy rates in broadcast channels with confidential messages and external eavesdroppers[J]. IEEE Transactions on Wireless Communications, 2014, 13(5): 2931–2943. doi: 10.1109/TWC.2014.041014.131101
    [15] XU Xiaoming, HE Biao, YANG Weiwei, et al. Secure transmission design for cognitive radio networks with Poisson distributed eavesdroppers[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(2): 373–387. doi: 10.1109/TIFS.2015.2500178
    [16] GRADSHTEIN I S and RYZHIK I M. Table of Integrals, Series, and Products[M]. 7th ed. Burlington: Academic Press, 2007: 337–338.
    [17] HAENGGI M. Stochastic Geometry for Wireless Networks[M]. Cambridge: Cambridge University Press, 2013: 99–102.
    [18] SADHWANI D, YADAV R N, and AGGARWAL S. Tighter bounds on the Gaussian Q function and its application in Nakagami-m fading channel[J]. IEEE Wireless Communications Letters, 2017, 6(5): 574–577. doi: 10.1109/LWC.2017.2717907
    [19] ZHOU Gui, PAN Cunhua, REN Hong, et al. A framework of robust transmission design for IRS-Aided MISO communications with imperfect cascaded channels[J]. IEEE Transactions on Signal Processing, 2020, 68: 5092–5106. doi: 10.1109/TSP.2020.3019666
    [20] ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814
    [21] CHONG E K P and ŻAK S H. An Introduction to Optimization[M]. 4th ed. New York: John Wiley & Sons, Inc. , 2013: 103–175.
  • 加载中
图(6)
计量
  • 文章访问数:  827
  • HTML全文浏览量:  753
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-09-22
  • 录用日期:  2021-09-22
  • 网络出版日期:  2021-12-19
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回