高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米波大规模MIMO系统波束旋转预编码设计

张爱华 贺博鑫 张爱军 李春雷

张爱华, 贺博鑫, 张爱军, 李春雷. 毫米波大规模MIMO系统波束旋转预编码设计[J]. 电子与信息学报, 2022, 44(5): 1847-1855. doi: 10.11999/JEIT210204
引用本文: 张爱华, 贺博鑫, 张爱军, 李春雷. 毫米波大规模MIMO系统波束旋转预编码设计[J]. 电子与信息学报, 2022, 44(5): 1847-1855. doi: 10.11999/JEIT210204
ZHANG Aihua, HE Boxin, ZHANG Aijun, LI Chunlei. Beam Rotating Precoding Scheme for Millimeter-wave Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1847-1855. doi: 10.11999/JEIT210204
Citation: ZHANG Aihua, HE Boxin, ZHANG Aijun, LI Chunlei. Beam Rotating Precoding Scheme for Millimeter-wave Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1847-1855. doi: 10.11999/JEIT210204

毫米波大规模MIMO系统波束旋转预编码设计

doi: 10.11999/JEIT210204
基金项目: 国家自然科学基金(61501530),河南省高等学校重点科研项目(21A510015),河南省自然科学基金(222300420594)
详细信息
    作者简介:

    张爱华:女,1976年生,教授,研究方向为大规模MIMO传输技术、稀疏信道估计、通信信号处理

    贺博鑫:男,1996年生,硕士生,研究方向为大规模MIMO传输技术

    张爱军:男,1972年生,高级工程师,研究方向为教育信息化、教育大数据、人工智能

    李春雷:男,1979年生,教授,研究方向为人工智能

    通讯作者:

    张爱华 zhah1229@sina.com

  • 中图分类号: TN928

Beam Rotating Precoding Scheme for Millimeter-wave Massive MIMO Systems

Funds: The National Natural Science Foundation of China (61501530), The Foundation of Henan Educational Committee (21A510015), The Natural Science Foundation of Henan Province (222300420594)
  • 摘要: 为解决毫米波大规模多输入多输出(MIMO)系统因功率泄漏导致的能量损耗问题,该文提出基于最小相位误差的波束旋转(MPE-BR)预编码方案。首先,采用基于相移器的波束选择网络,构建波束选择集合,系统中每个射频(RF)链通过选择多个波束达到收集泄漏功率的目的。然后,以最大增益波束为基准,根据最小相位误差准则确定波束选择集合的相位,将所选波束的信道增益近似对准同一方向,使得用户的接收信噪比(SNR)最大,从而提高系统性能。此外,该文对所提预编码算法进行了理论分析,推导了频谱效率上界和能量效率上界。实验验证了理论推导的正确性,仿真结果表明,所提方法具有接近无漏功率的和速率性能,与现有的算法相比,所提方案具有较好的频谱效率和能量效率性能。
  • 图  1  基于相移器的波束选择网络结构

    图  2  UPA场景下波束选择过程

    图  3  波束组合图示

    图  4  不同波束数目下的系统效率性能对比(ULA)

    图  5  不同发射功率下的系统性能对比(ULA)

    图  6  有限散射场景下对不同发射功率的系统性能对比(UPA)

    图  7  LoS场景下对不同发射功率的系统性能对比(UPA)

    表  1  MPE-BR预编码算法

     输入:$ {\boldsymbol{\tilde H}} $,用户数$ M $,每个用户的最大波束选择数量$ {B_{\max }} $,选择门限$ \kappa $;
     输出:${{\boldsymbol{F}}}_{\text{RF} }$, ${{\boldsymbol{F}}}_{\text{BB} }$
     (1) 初始化天线集合$ \text{}=\{1,2,\cdots ,N\} $,波束选择集合${\mathcal{B} } = \varnothing$
     (2) for $k \le M$ do
     (3) 初始化第$ k $个用户的所选波束集合${ {\mathcal{B} }_k} = \varnothing$,功率泄漏波束集合${ {\mathcal{A} }_k} = \varnothing$,候选波束集合${ {\mathcal{C} }_k} = \varnothing$, $ {\boldsymbol{f}}_{{\text{RF}}}^k = 0 $;
     (4) $ {p_{\max }} = \arg {\max _{n \in {\mathcal{J}}\backslash {\mathcal{B}}}}\left| {{{{\boldsymbol{\tilde h}}}_{kn}}} \right| $,设置$ {\boldsymbol{f}}_{{\text{RF}}}^{k{p_{\max }}} = 1 $及$ {{\mathcal{B}}_k} = {{\mathcal{B}}_k} \cup \left\{ {{p_{\max }}} \right\} $,确定$ {{\mathcal{A}}_k} $;
     (5) 更新候选波束集合$ {{\mathcal{C}}_k} = {{\mathcal{A}}_k}\backslash {{\mathcal{B}}_k} $;
     (6) $ p = \arg {\max _{n \in {{\mathcal{C}}_k}}}\left| {{{{\boldsymbol{\tilde h}}}_{kn}}} \right| $, $ {{\mathcal{B}}_k} = {{\mathcal{B}}_k} \cup \left\{ p \right\} $;
     (7) 根据式(15)和式(16)计算$ {\boldsymbol{f}}_{{\text{RF}}}^{kp} $;
     (8) 重复执行步骤5~7,直至${ {\boldsymbol{\tilde h} }_{kp} } \le \kappa { {\boldsymbol{\tilde h} }_{k{p_{\max } } } }$或$ {B_k} > {B_{\max }} $;
     (9) $ {\mathcal{B}} = {\mathcal{B}} \cup {{\mathcal{B}}_k} $;
     (10) end for
     (11) $ {{\boldsymbol{F}}_{{\text{RF}}}} = \left[ {{\boldsymbol{f}}_{{\text{RF}}}^{\text{1}},{\boldsymbol{f}}_{{\text{RF}}}^{\text{2}}, \cdots ,{\boldsymbol{f}}_{{\text{RF}}}^{{N_{{\text{RF}}}}}} \right] $; $ {{\boldsymbol{\bar h}}_k} = {\boldsymbol{F}}_{{\text{RF}}}^{\text{H}}{{\boldsymbol{\tilde h}}_k} $, $ {\alpha _k}{\text{ = }}{1 \mathord{\left/ {\vphantom {1 {\left\| {{{{\boldsymbol{\bar h}}}_{\text{k}}}} \right\|}}} \right. } {\left\| {{{{\boldsymbol{\bar h}}}_{\text{k}}}} \right\|}} $, $ {\boldsymbol{f}}_{{\text{BB}}}^k{\text{ = }}{\alpha _k}{{\boldsymbol{\bar h}}_k} $; $ {{\boldsymbol{F}}_{{\text{BB}}}} = \left[ {{\boldsymbol{f}}_{{\text{BB}}}^{\text{1}},{\boldsymbol{f}}_{{\text{BB}}}^{\text{2}}, \cdots ,{\boldsymbol{f}}_{{\text{BB}}}^M} \right] $.
    下载: 导出CSV
  • [1] SWINDLEHURST A L, AYANOGLU E, HEYDARI P, et al. Millimeter-wave massive MIMO: The next wireless revolution[J]. IEEE Communications Magazine, 2014, 52(9): 56–62. doi: 10.1109/MCOM.2014.6894453
    [2] 张平, 陶运铮, 张治. 5G若干关键技术评述[J]. 通信学报, 2016, 37(7): 15–29. doi: 10.11959/j.issn.1000-436x.2016130

    ZHANG Ping, TAO Yunzheng, and ZHANG Zhi. Survey of several key technologies for 5G[J]. Journal on Communications, 2016, 37(7): 15–29. doi: 10.11959/j.issn.1000-436x.2016130
    [3] MORSALI A and CHAMPAGNE B. Achieving fully-digital performance by hybrid analog/digital beamforming in wide-band massive-MIMO systems[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 5125–5129.
    [4] 解培中, 孙锐, 李汀. 基于连续干扰消除的毫米波MIMO系统混合预编码算法[J]. 电子与信息学报, 2019, 41(2): 409–416. doi: 10.11999/JEIT180379

    XIE Peizhong, SUN Rui, and LI Ting. Hybrid precoding algorithm based on successive interference cancellation for millimeter wave MIMO systems[J]. Journal of Electronics &Information Technology, 2019, 41(2): 409–416. doi: 10.11999/JEIT180379
    [5] BRADY J, BEHDAD N, and SAYEED A M. Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3814–3827. doi: 10.1109/TAP.2013.2254442
    [6] SHENG Hualian, CHEN Xihan, SHEN Kaiming, et al. Energy efficiency optimization for beamspace massive MIMO systems with low-resolution ADCs[C]. IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 2020: 1–7.
    [7] TANG Siyang, MA Zheng, XIAO Ming, et al. Hybrid transceiver design for beamspace MIMO-NOMA in code-domain for mmWave communication using lens antenna array[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2118–2127. doi: 10.1109/JSAC.2020.3000885
    [8] GAO Xinyu, DAI Linglong, and SAYEED A M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications[J]. IEEE Communications Magazine, 2018, 56(4): 211–217. doi: 10.1109/MCOM.2018.1600727
    [9] AMADORI P V and MASOUROS C. Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection[J]. IEEE Transactions on Communications, 2015, 63(6): 2212–2223. doi: 10.1109/TCOMM.2015.2431266
    [10] HU Qiyu, LIU Yanzhen, CAI Yunlong, et al. Joint deep reinforcement learning and unfolding: beam selection and precoding for mmWave multiuser MIMO with lens arrays[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2289–2304. doi: 10.1109/JSAC.2021.3087233
    [11] SAYEED A and BRADY J. Beamspace MIMO for high-dimensional multiuser communication at millimeter-wave frequencies[C]. 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, USA, 2013: 3679–3684.
    [12] GAO Xinyu, DAI Linglong, CHEN Zhijie, et al. Near-optimal beam selection for beamspace MmWave massive MIMO systems[J]. IEEE Communications Letters, 2016, 20(5): 1054–1057. doi: 10.1109/LCOMM.2016.2544937
    [13] GAO Yuan, KHALIEL M, ZHENG Feng, et al. Rotman lens based hybrid analog–digital beamforming in massive MIMO systems: Array architectures, beam selection algorithms and experiments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9134–9148. doi: 10.1109/TVT.2017.2714693
    [14] SARKER M A L, KADER M F, and HAN D S. Rate-loss mitigation for a millimeter-wave beamspace MIMO lens antenna array system using a hybrid beam selection scheme[J]. IEEE Systems Journal, 2020, 14(3): 3582–3585. doi: 10.1109/JSYST.2020.2964283
    [15] XIE Tian, DAI Linglong, NG D W K, et al. On the power leakage problem in millimeter-wave massive MIMO with lens antenna arrays[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4730–4744. doi: 10.1109/TSP.2019.2926019
    [16] EL AYACH O, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/TWC.2014.011714.130846
    [17] ZENG Yong and ZHANG Rui. Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm[J]. IEEE Transactions on Communications, 2016, 64(4): 1557–1571. doi: 10.1109/TCOMM.2016.2533490
    [18] ZHANG Jianjun, HUANG Yongming, WANG Jiaheng, et al. Per-antenna constant envelope precoding and antenna subset selection: A geometric approach[J]. IEEE Transactions on Signal Processing, 2016, 64(23): 6089–6104. doi: 10.1109/TSP.2016.2582463
    [19] MÉNDEZ-RIAL R, RUSU C, GONZÁLEZ-PRELCIC N, et al. Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?[J]. IEEE Access, 2016, 4: 247–267. doi: 10.1109/ACCESS.2015.2514261
    [20] AKDENIZ M R, LIU Yuanpeng, SAMIMI M K, et al. Millimeter wave channel modeling and cellular capacity evaluation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1164–1179. doi: 10.1109/JSAC.2014.2328154
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  563
  • HTML全文浏览量:  473
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-12-12
  • 录用日期:  2021-12-14
  • 网络出版日期:  2022-01-11
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回