高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽带均匀同心球阵列的低复杂度二维波达方向估计算法

陈海华 王沛曌

陈海华, 王沛曌. 基于宽带均匀同心球阵列的低复杂度二维波达方向估计算法[J]. 电子与信息学报, 2022, 44(2): 710-717. doi: 10.11999/JEIT210142
引用本文: 陈海华, 王沛曌. 基于宽带均匀同心球阵列的低复杂度二维波达方向估计算法[J]. 电子与信息学报, 2022, 44(2): 710-717. doi: 10.11999/JEIT210142
CHEN Haihua, WANG Peizhao. Low Complexity Two-Dimensional Direction Of Arrival Estimation Using Wideband Uniform Concentric Spherical Arrays[J]. Journal of Electronics & Information Technology, 2022, 44(2): 710-717. doi: 10.11999/JEIT210142
Citation: CHEN Haihua, WANG Peizhao. Low Complexity Two-Dimensional Direction Of Arrival Estimation Using Wideband Uniform Concentric Spherical Arrays[J]. Journal of Electronics & Information Technology, 2022, 44(2): 710-717. doi: 10.11999/JEIT210142

基于宽带均匀同心球阵列的低复杂度二维波达方向估计算法

doi: 10.11999/JEIT210142
详细信息
    作者简介:

    陈海华:女,1978年生,副教授,研究方向为通信与信号处理、智能天线技术

    王沛曌:女,1997年生,硕士生,研究方向为通信与信号处理

    通讯作者:

    王沛曌 wpz@mail.nankai.edu.cn

  • 中图分类号: TN929.5

Low Complexity Two-Dimensional Direction Of Arrival Estimation Using Wideband Uniform Concentric Spherical Arrays

  • 摘要: 该文提出一种基于宽带均匀同心球阵列(UCSA)的2维波达方向(2D-DOA)低复杂度估计算法。该方法将宽带UCSA输出信号转换为相位模式,并对其进行频率补偿,实现近似频率不变(FI)特性,从而降低宽带信号处理的计算复杂度。为了进一步降低2D-DOA估计的计算复杂度,该文提出基于FI-UCSA的降维多重信号分类(MUSIC)算法。该方法将相位模式导向向量分解为方位角和仰角相关的两个矩阵,从而把2维搜索问题简化为1维(1D)搜索,实现降维优化并降低计算复杂度。仿真结果表明,该算法计算复杂度相较于2维MUSIC算法得到了极大的降低,并且在估计精度和分辨率上均稍有改善。
  • 图  1  UCSA结构图

    图  2  阵列的频率不变性

    图  3  阵列的电子可旋转和空间一致特性

    图  4  DOA估计的分辨率随SNR的变化

    图  5  DOA估计的RMSE随SNR的变化

    图  6  DOA估计的RMSE随扫描步长的变化

    图  7  DOA估计的RMSE随设定参数的变化

    表  1  计算复杂度随相位模式总个数$b$的变化

    $b$
    254981121
    RD MUSIC2.26×1071.24×1084.38×1081.19×109
    2D MUSIC7.29×1092.95×10108.24×10101.86×1011
    下载: 导出CSV

    表  2  ISM与FIB计算复杂度对比

    $b$
    254981
    FIB2.26×1071.24×1084.38×108
    ISM4.52×1092.48×10108.74×1010
    RSS1.29×1085.79×1081.85×109
    基于阵列接收数据的修正算法1.14×1085.14×1081.61×109
    下载: 导出CSV
  • [1] 张家成, 邱天爽, 栾声扬, 等. 脉冲噪声下基于循环相关熵和稀疏重构的宽带信号DOA估计[J]. 电子与信息学报, 2020, 42(11): 2587–2591. doi: 10.11999/JEIT190521

    ZHANG Jiacheng, QIU Tianshuang, LUAN Shengyang, et al. Wideband DOA estimation via cyclic correntropy and sparse reconstruction in the presence of impulsive noise[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2587–2591. doi: 10.11999/JEIT190521
    [2] STOICA P and NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(5): 720–741. doi: 10.1109/29.17564
    [3] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    [4] ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    [5] 王旭东, 仲倩, 闫贺, 等. 一种二维信号波达方向估计的改进多重信号分类算法[J]. 电子与信息学报, 2019, 41(9): 2137–2142. doi: 10.11999/JEIT181090

    WANG Xudong, ZHONG Qian, YAN He, et al. An improved MUSIC algorithm for two dimensional direction of arrival estimation[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2137–2142. doi: 10.11999/JEIT181090
    [6] XU Haiyun, WANG Daming, BA Bin, et al. Direction-of-arrival estimation for both uncorrelated and coherent signals in coprime array[J]. IEEE Access, 2019, 7: 18590–18600. doi: 10.1109/ACCESS.2019.2896979
    [7] SAMAL S K and SUBUDHI B. New signal subspace approach to estimate the inter-area oscillatory modes in power system using TLS-ESPRIT algorithm[J]. IET Generation, Transmission & Distribution, 2019, 13(18): 4123–4140.
    [8] SHAH S M, SAMAR R, KHAN N M, et al. Fractional-order adaptive signal processing strategies for active noise control systems[J]. Nonlinear Dynamics, 2016, 85(3): 1363–1376. doi: 10.1007/s11071-016-2765-6
    [9] ZHANG Xiaofei, CHEN Weiyang, ZHENG Wang, et al. Localization of near-field sources: A reduced-dimension MUSIC algorithm[J]. IEEE Communications Letters, 2018, 22(7): 1422–1425. doi: 10.1109/LCOMM.2018.2837049
    [10] 张铁峰, 吉波. 基于降维处理的MUSIC二维DOA估计算法[J]. 现代导航, 2018, 9(3): 196–199. doi: 10.3969/j.issn.1674-7976.2018.03.007

    ZHANG Tiefeng and JI Bo. Two dimensional DOA estimation based on reduced-dimension MUSIC[J]. Modern Navigation, 2018, 9(3): 196–199. doi: 10.3969/j.issn.1674-7976.2018.03.007
    [11] 徐乐, 吴日恒, 张小飞. L阵基于降维MUSIC的二维DOA与频率估计[J]. 系统工程与电子技术, 2019, 41(1): 1–8.

    XU Le, WU Riheng, and ZHANG Xiaofei. 2D-DOA and frequency estimation for L-shaped array via reduced-dimensional MUSIC[J]. Systems Engineering and Electronics, 2019, 41(1): 1–8.
    [12] 徐正勤, 伍世虔, 刘清宇. 一种准确鲁棒的宽带信号DOA估计算法[J]. 计算机科学, 2019, 46(11A): 376–380, 398.

    XU Zhengqin, WU Shiqian, and LIU Qingyu. Accurate and robust algorithm for broadband signal DOA estimation[J]. Computer Science, 2019, 46(11A): 376–380, 398.
    [13] WANG H and KAVEH M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 823–831. doi: 10.1109/TASSP.1985.1164667
    [14] 孟子健, 王沛曌, 陈海华. 基于均匀同心圆阵列的近场宽带波束形成[J]. 压电与声光, 2020, 42(3): 428–432. doi: 10.11977/j.issn.1004-2474.2020.03.031

    MENG Zijian, WANG Peizhao, and CHEN Haihua. Near-field broadband beamforming based on uniform concentric circular array[J]. Piezoelectrics &Acoustooptics, 2020, 42(3): 428–432. doi: 10.11977/j.issn.1004-2474.2020.03.031
    [15] WARD D B, KENNEDY R A, and WILLIAMSON R C. Theory and design of broadband sensor arrays with frequency invariant far-field beam patterns[J]. The Journal of the Acoustical Society of America, 1995, 97(2): 1023–1034. doi: 10.1121/1.412215
    [16] CHAN S C and PUN C K S. On the design of digital broadband beamformer for uniform circular array with frequency invariant characteristics[C]. IEEE International Symposium on Circuits and Systems, Phoenix-Scottsdale, USA, 2002: 693–696.
    [17] CHEN H H and CHAN S C. Adaptive beamforming and DOA estimation using uniform concentric spherical arrays with frequency invariant characteristics[J]. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2007, 46(1): 15–34. doi: 10.1007/s11265-006-0005-x
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  737
  • HTML全文浏览量:  259
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-18
  • 修回日期:  2021-05-27
  • 网络出版日期:  2021-06-21
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回