高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征排列和空间激活的显著物体检测方法

祝世平 谢文韬 赵丛杨 李庆海

祝世平, 谢文韬, 赵丛杨, 李庆海. 基于特征排列和空间激活的显著物体检测方法[J]. 电子与信息学报, 2022, 44(3): 1093-1101. doi: 10.11999/JEIT210133
引用本文: 祝世平, 谢文韬, 赵丛杨, 李庆海. 基于特征排列和空间激活的显著物体检测方法[J]. 电子与信息学报, 2022, 44(3): 1093-1101. doi: 10.11999/JEIT210133
ZHU Shiping, XIE Wentao, ZHAO Congyang, LI Qinghai. Salient Object Detection via Feature Permutation and Space Activation[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1093-1101. doi: 10.11999/JEIT210133
Citation: ZHU Shiping, XIE Wentao, ZHAO Congyang, LI Qinghai. Salient Object Detection via Feature Permutation and Space Activation[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1093-1101. doi: 10.11999/JEIT210133

基于特征排列和空间激活的显著物体检测方法

doi: 10.11999/JEIT210133
基金项目: 国家重点研发计划(2016YFB0500505),国家自然科学基金(61375025, 61075011, 60675018)
详细信息
    作者简介:

    祝世平:男,1970年生,副教授,工学博士,硕士生导师,研究方向为视频压缩编码,计算机视觉,图像处理

    谢文韬:男,1997年生,硕士生,研究方向为计算机视觉,机器学习,深度学习

    赵丛杨:男,1997年生,硕士生,研究方向为计算机视觉,深度学习,视觉测量

    李庆海:男,1997年生,硕士生,研究方向为计算机视觉,视频编码

    通讯作者:

    祝世平 spzhu@163.com

  • 中图分类号: TN911.73; TN919.8

Salient Object Detection via Feature Permutation and Space Activation

Funds: The National Key Research and Development Program (2016YFB0500505), The National Natural Science Foundation of China (61375025, 61075011, 60675018)
  • 摘要: 显著物体检测目前在计算机视觉领域中非常重要,如何处理不同尺度的特征信息成为能否获得优秀预测结果的关键。该文有两个主要贡献,一是提出一种用于显著目标检测的特征排列方法,基于自编码结构的卷积神经网络模型,利用尺度表征的概念将特征图进行分组和重排列,以获得一个更加泛化的显著目标检测模型和更加准确的显著目标预测结果;二是在输出部分利用了双重卷积残差和FReLU激活函数,抓取更全面的像素信息,完成空间信息上的激活。利用两种算法的特点融合作用于模型的学习训练。实验结果表明,将该文算法与主流的显著目标检测算法进行比较,在所有评测指标上都达到了最优的效果。
  • 图  1  模型整体结构

    图  2  自编码结构

    图  3  特征排列流程

    图  4  双重卷积残差模块

    图  5  基于ReLU派生的激活函数

    图  6  DUTS-TR数据集示例图

    图  7  特征排列和空间激活对模型的预测图结果对比

    图  8  本文算法和其他主流显著物体检测算法结果对比图

    图  9  本文算法与对比算法在前后景分割效果细节上的对比

    表  1  特征排列和空间激活对模型的影响对比研究

    基础特征排列空间激活BCE lossIOU lossmaxF↑S-Measure↑MAE↓
    0.8590.8330.078
    0.8740.8520.061
    0.8690.8460.072
    0.8890.8710.049
    0.8840.8730.050
    0.8920.8770.044
    下载: 导出CSV

    表  2  本文算法和其他主流显著物体检测算法在不同数据集上数据指标对比研究

    HKU-ISDUTS-TestSOD
    maxF↑S-measure↑MAE↓maxF↑S-measure↑MAE↓maxF↑S-measure↑MAE↓
    RAS[8]0.9010.8870.0450.8070.8390.0590.8100.7640.124
    BASNet[10]0.9190.9090.0320.8380.8660.0480.8050.7690.114
    CPD[11]0.9110.9050.0340.8400.8690.0430.8140.7670.112
    PoolNet[12]0.9230.9190.0300.8650.8860.0370.8310.7880.106
    MIJR[13]0.9010.8870.0450.8070.8390.0590.8100.7640.124
    MINet[15]0.9130.9050.0310.8400.8630.0370.8140.7760.126
    LDF[14]0.9190.9160.0370.8500.8740.0350.8430.7770.113
    ROSA[16]0.8970.8870.0410.8650.8860.0400.8030.7630.110
    RAR[17]0.9170.9190.0260.8540.8710.0420.8560.7800.104
    本文0.9430.9340.0220.8850.8930.0300.8780.7940.092
    下载: 导出CSV
  • [1] GIBSON K B, VO D T, and NGUYEN T Q. An investigation of dehazing effects on image and video coding[J]. IEEE Transactions on Image Processing, 2012, 21(2): 662–673. doi: 10.1109/TIP.2011.2166968
    [2] SULLIVAN G J, OHM J R, HAN W J, et al. Overview of the high efficiency video coding (HEVC) standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649–1668. doi: 10.1109/TCSVT.2012.2221191
    [3] OHM J R, SULLIVAN G J, SCHWARZ H, et al. Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC)[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1669–1684. doi: 10.1109/TCSVT.2012.2221192
    [4] TREISMAN A M and GELADE G. A feature-integration theory of attention[J]. Cognitive Psychology, 1980, 12(1): 97–136. doi: 10.1016/0010-0285(80)90005-5
    [5] KOCH C and ULLMAN S. Shifts in selective visual attention: Towards the underlying neural circuitry[J]. Human Neurobiology, 1985, 4(4): 219–227.
    [6] ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259. doi: 10.1109/34.730558
    [7] LIU Nian, HAN Junwei, and YANG M H. PiCANet: Learning pixel-wise contextual attention for saliency detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3089–3098.
    [8] CHEN Shuhan, TAN Xiuli, WANG Ben, et al. Reverse attention for salient object detection[C]. The 15th European Conference on Computer Vision, Munich, Germany, Springer, 2018: 236–252.
    [9] LI Xin, YANG Fan, CHENG Hong, et al. Contour knowledge transfer for salient object detection[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 370–385.
    [10] QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. BASNet: Boundary-aware salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7471–7481.
    [11] WU Zhe, SU Li, and HUANG Qingming. Cascaded partial decoder for fast and accurate salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3902–3911.
    [12] LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. A simple pooling-based design for real-time salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3912–3921.
    [13] MA Guangxiao, CHEN Chenglizhao, LI Shuai, et al. Salient object detection via multiple instance joint re-learning[J]. IEEE Transactions on Multimedia, 2020, 22(2): 324–336. doi: 10.1109/TMM.2019.2929943
    [14] WEI Jun, WANG Shuhui, WU Zhe, et al. Label decoupling framework for salient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13025–13034.
    [15] PANG Youwei, ZHAO Xiaoqi, ZHANG Lihe, et al. Multi-scale interactive network for salient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9413–9422.
    [16] LI Haofeng, LI Guanbin, and YU Yizhou. ROSA: Robust salient object detection against adversarial attacks[J]. IEEE Transactions on Cybernetics, 2020, 50(11): 4835–4847. doi: 10.1109/TCYB.2019.2914099
    [17] CHEN Shuhan, TAN Xiuli, WANG Ben, et al. Reverse attention-based residual network for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 3763–3776. doi: 10.1109/TIP.2020.2965989
    [18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [19] ZHANG Xianyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6848–6856.
    [20] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    [21] MA Ningning, ZHANG Xiangyu, and SUN Jian. Funnel activation for visual recognition[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 1–17.
    [22] RAHMAN M A and WANG Yang. Optimizing intersection-over-union in deep neural networks for image segmentation[C]. The 12th International Symposium on Visual Computing, Las Vegas, USA, 2016: 234–244.
    [23] MARGOLIN R, ZELNIK-MANOR L, and TAL A. How to evaluate foreground maps[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 248–255.
    [24] FAN Dengping, CHENG Mingming, LIU Yun, et al. Structure-measure: A new way to evaluate foreground maps[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4558–4567.
    [25] PERAZZI F, KRÄHENBÜHL P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 733–740.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  414
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-08-19
  • 网络出版日期:  2021-09-04
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回