An Improved Motion Compensation Algorithm for Range Complex Spatial Variant Doppler SAR Imaging
-
摘要: 沿距离维复杂空变的多普勒对SAR成像质量有很大影响,常规的距离多普勒 (RD)算法处理结果容易出现明暗交替现象,图像可视性较差。通过在方位预滤波和方位脉冲压缩时,沿距离块/门估计或者计算多普勒频率,在方位预滤波和方位脉压时把窗函数根据多普勒频率沿方位移动,能有效解决明暗交替现象,但是这种处理方法无法改善距离近端或远端的聚焦效果。基于上述问题,该文提出一种改进的运动补偿方法,通过沿距离维分块进行运动补偿和走动校正,把沿距离空变的多普勒校直,然后进行方位脉压处理。所提方法处理结果没有明暗交替现象,图像沿距离维连续完整,可视性较好,同时在远离距离中心处还具有良好的聚焦效果。实测数据处理结果验证了该算法的有效性。Abstract: The complex spatial variant Doppler along the range dimension has large influence on SAR imaging quality, the normal range Doppler (RD) algorithm is easy to produce the phenomenon of alternating light and dark, image visibility is poor. During azimuth pre-filtering and azimuth pulse compression estimation or calculation the Doppler frequency along range block/gate, in azimuth pre-filtering and azimuth pulse compression, the window function is moved along the azimuth according to Doppler frequency can effectively solve the phenomenon of chiaroscuro, however, this method can not improve the focusing effect in near or far range. Based on the above problems, an improved motion compensation method is proposed in this paper, motion compensation and motion correction are performed by dividing the blocks along the range dimension, collimation of a spatially variable Doppler along range and then azimuth pulse compression is carried out. There is no alternation of light and dark in the proposed method processing results, the image is continuous and complete along the range dimension and has better visibility. At the same time, the image has a good focusing effect at far distance from the range center. The validity of the algorithm is verified by the measured data.
-
Key words:
- SAR /
- Motion compensation /
- Doppler /
- Spatial variant
-
表 1 3种方法处理结果对比
指标项 角反序号 距离向 方位向 方法1 方法2 方法3 方法1 方法2 方法3 3 dB宽度(m) 1 0.49 0.44 0.26 1.65 1.38 0.62 2 0.50 0.44 0.26 1.83 1.43 0.75 3 0.47 0.45 0.26 1.61 1.38 0.90 4 0.48 0.40 0.25 1.69 1.27 0.89 5 0.53 0.40 0.25 1.50 1.08 0.79 均值 0.50 0.43 0.25 1.66 1.31 0.79 峰值旁瓣比(dB) 1 –14.49 –12.81 –21.48 –20.32 –21.55 –21.36 2 –19.35 –18.18 –21.92 –19.45 –20.25 –21.26 3 –16.73 –16.53 –18.57 –23.91 –23.89 –22.00 4 –16.98 –17.02 –22.14 –20.62 –21.85 –21.87 5 –21.10 –21.90 –20.37 –25.89 –28.91 –24.06 均值 –17.73 –17.29 –20.89 –22.04 –23.29 –22.11 积分旁瓣比(dB) 1 –13.96 –12.56 –17.71 –14.60 –15.13 –13.01 2 –14.79 –15.56 –18.65 –17.47 –16.43 –11.94 3 –11.92 –12.52 –15.35 –16.41 –16.81 –15.29 4 –14.75 –15.25 –17.54 –14.88 –14.46 –14.01 5 –17.40 –17.70 –16.13 –14.62 –15.76 –14.80 均值 –14.56 –14.72 –17.08 –15.59 –15.72 –13.81 -
[1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 61–69, 141–149.BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005: 61–69, 141–149. [2] XU Huajian, YANG Zhiwei, TIAN Min, et al. An extended moving target detection approach for high-resolution multichannel SAR-GMTI systems based on enhanced shadow-aided decision[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 715–729. doi: 10.1109/TGRS.2017.2754098 [3] XU Jia, HUANG Zuzhen, WANG Zhirui, et al. Radial velocity retrieval for multichannel SAR moving targets with time-space Doppler deambiguity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 35–48. doi: 10.1109/TGRS.2017.2720692 [4] 孙光才, 王裕旗, 高昭昭, 等. 一种基于短合成孔径的双星干涉精确定位方法[J]. 电子与信息学报, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940SUN Guangcai, WANG Yuqi, GAO Zhaozhao, et al. A dual satellite interferometric precise localization method based on short synthetic aperture[J]. Journal of Electronics &Information Technology, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940 [5] 李春升, 于泽, 陈杰. 高分辨率星载SAR成像与图像质量提升方法综述[J]. 雷达学报, 2019, 8(6): 717–731. doi: 10.12000/JR19085LI Chunsheng, YU Ze, and CHEN Jie. Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717–731. doi: 10.12000/JR19085 [6] JIN Guodong, DENG Yunkai, WANG R, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6155–6168. doi: 10.1109/TGRS.2019.2904627 [7] ZHU Xiaoxiang, HE Feng, YE Fan, et al. Sidelobe suppression with resolution maintenance for SAR images via sparse representation[J]. Sensors, 2018, 18(5): 1589. doi: 10.3390/s18051589 [8] 王宇, 曹运合, 齐晨, 等. 基于高超声速平台前斜视多通道SAR-GMTI杂波抑制方法[J]. 电子与信息学报, 2020, 42(2): 458–464. doi: 10.11999/JEIT181002WANG Yu, CAO Yunhe, QI Chen, et al. Multi-channel SAR-GMTI clutter suppression method based on hypersonic platform forward squint[J]. Journal of Electronics &Information Technology, 2020, 42(2): 458–464. doi: 10.11999/JEIT181002 [9] WANG Puyang, ZHANG He, and PATEL V M. SAR image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(12): 1763–1767. doi: 10.1109/LSP.2017.2758203 [10] CHEN Leping, AN Daoxiang, HUANG Xiaotao, et al. A 3D reconstruction strategy of vehicle outline based on single-pass single-polarization CSAR data[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5545–5554. doi: 10.1109/TIP.2017.2738566 [11] ZHANG Qiang, YUAN Qiangqiang, LI Jie, et al. Learning a dilated residual network for SAR image despeckling[J]. Remote Sensing, 2018, 10(2): 196. doi: 10.3390/rs10020196 [12] 安道祥. 高分辨率SAR成像处理技术研究[D]. [博士论文], 国防科学技术大学, 2011.AN Daoxiang. Study on the imaging techniques for high resolution SAR systems[D]. [Ph. D. dissertation], National University of Defense Technology, 2011. [13] 孙光才. 多通道波速指向高分辨SAR和动目标成像技术[D]. [博士论文], 西安电子科技大学, 2012.SUN Guangcai. Multi-channel beam steering SAR and GMTIm with high resolution[D]. [Ph. D. dissertation], Xidian University, 2012. [14] 陈溅来. 机/星载SAR非线性轨迹信号建模与成像方法研究[D]. [博士论文], 西安电子科技大学, 2018.CHEN Jianlai. Study on signal modeling and imaging algorithm for airborne/spaceborne SAR with nonlinear trajectory[D]. [Ph. D. dissertation], Xidian University, 2018. [15] 李燕平, 邢孟道, 保铮. 沿航向运动补偿的几何形变校正[J]. 西安电子科技大学学报:自然科学版, 2006, 33(6): 881–886.LI Yanping, XING Mengdao, and BAO Zheng. The correction of geometric distortion for along-track motion compensation[J]. Journal of Xidian University, 2006, 33(6): 881–886. [16] 邢涛, 李军, 王冠勇, 等. 基于非均匀快速傅里叶变换的 SAR 方位向运动补偿算法[J]. 电子与信息学报, 2014, 36(5): 1023–1029.XING Tao, LI Jun, WANG Guanyong, et al. An along-track motion compensation algorithm based on Non-Uniform Fast Fourier Transform (NUFFT) for SAR[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1023–1029. [17] 邢涛, 胡庆荣, 李军, 等. 距离走动校正的距离空变分析与补偿[J]. 信号处理, 2015, 31(8): 962–967. doi: 10.3969/j.issn.1003-0530.2015.08.012XING Tao, HU Qingrong, LI Jun, et al. Range-dependent range walk correction analysis and compensation[J]. Journal of Signal Processing, 2015, 31(8): 962–967. doi: 10.3969/j.issn.1003-0530.2015.08.012