Structure Optimization of Low Peak-to-average Power Ratio Filter Bank MultiCarrier Based on Constellation Symbol Sequence Local Phase Rotation
-
摘要: 针对基于离散傅里叶变换(DFT)扩频的低峰均功率比滤波器组多载波(LP-FBMC)结构需要额外传输边带信息(SI)等问题,该文提出一种基于星座符号序列局部相位旋转的无SI优化结构。考虑到SI是由LP-FBMC在发送端对4种信号传输形式进行选择而产生,结合这4种形式解调后的星座符号序列与原符号序列的关系,采用对星座符号序列进行局部相位旋转的方式避免边带信息的传输。局部旋转的方式减少了相位旋转角度的个数,降低了计算复杂度,并在接收端通过扩大相位判定范围的方式提升了相位估计的正确率。仿真结果表明,所提结构不但能保持与LP-FBMC结构相同的峰均功率比抑制性能和相近的误码率性能,而且计算复杂度相较于嵌入式SI结构降低了约20%。Abstract: Considering the problem that the Low Peak-to-average power ratio Filter Bank MultiCarrier (LP-FBMC) structure based on Discrete Fourier Transform(DFT) spread spreading requires additional transmission Side Information (SI), an optimized structure of without SI based on local phase rotation of constellation symbol sequence is proposed. Considering that SI is generated by LP-FBMC choosing four signal transmission forms at the transmitter, combining the connection between the demodulated constellation symbols sequence and the original symbols sequence of these four forms, the local phase rotation of the constellation symbol sequence is adopted to avoid the transmission of SI. The local rotation method reduces the number of the phase rotation angles, which reduces the complexity, and the correct rate of phase estimation is improved at the receiver by expanding the decision range of phase. The simulation results show that the proposed structure not only maintains the same PAPR suppression performance and similar BER performance as the LP-FBMC structure, but also reduces the computational complexity by about 20% compared with the embedded SI structure.
-
表 1 各个结构的发送端计算复杂度对比(
$N = 128$ )结构 主要操作 计算复杂度 FBMC 2 IDFTs, 2 PPNs 24576 DFTs-FBMC 1 DFT, 2 IDFTs, 2 PPNs 26368 LP-FBMC 1 DFT, 2 IDFTs, 4 PPNs 34560 嵌入式SI 1 DFT, 1 IDFTs, 8 PPNs, 48896 $3 \times {N_p}$个符号相位旋转 所提结构 2 DFT, 2 IDFTs, 4 PPNs, 38912 $2 \times {N / 2}$个符号相位旋转 $2 \times 4N$个符号乘以${1 / 2}$ -
[1] HAMMOODI A, AUDAH L, and TAHER M A. Green coexistence for 5G waveform candidates: A review[J]. IEEE Access, 2019, 7: 10103–10126. doi: 10.1109/ACCESS.2019.2891312 [2] KIM J, PARK Y, WEON S, et al. A new filter-bank multicarrier system: The linearly processed FBMC system[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4888–4898. doi: 10.1109/TWC.2018.2832646 [3] DE ALMEIDA I B F, MENDES L L, RODRIGUES J J P C, et al. 5G waveforms for IoT applications[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2554–2567. doi: 10.1109/COMST.2019.2910817 [4] KOLLAR Z, VARGA L, and CZIMER K. Clipping-based iterative PAPR-reduction techniques for FBMC[C]. The 17th International OFDM Workshop 2012 (InOWo'12), Essen, Germany, 2012: 1–7. [5] MOON J H, NAM Y R, and KIM J H. PAPR reduction in the FBMC-OQAM system via segment-based optimization[J]. IEEE Access, 2018, 6: 4994–5002. doi: 10.1109/ACCESS.2018.2794366 [6] YANG Chaosan, LIU Rongke, ZHAO Ling, et al. Modified SLM scheme of FBMC signal in satellite communications[J]. IET Communications, 2019, 13(11): 1702–1708. doi: 10.1049/iet-com.2018.5101 [7] YUEN C H, AMINI P, and FARHANG-BOROUJENY B. Single carrier frequency division multiple access (SC-FDMA) for filter bank multicarrier communication systems[C]. IEEE Fifth International Conference on Cognitive Radio Oriented Wireless Networks & Communications, Cannes, France, 2010: 1–5. [8] IHALAINEN T, VIHOLAINEN A, STITZ T H, et al. Filter bank based multi-mode multiple access scheme for wireless uplink[C]. 2009 17th European Signal Processing Conference, Glasgow, UK, 2009: 1354–1358. [9] NA Dongjun and CHOI K. Low PAPR FBMC[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 182–193. doi: 10.1109/TWC.2017.2764028 [10] ABOUL-DAHAB M A, FOUAD M M, and ROSHDY R A. Generalized discrete Fourier transform for FBMC peak to average power ratio reduction[J]. IEEE Access, 2019, 7: 81730–81740. doi: 10.1109/ACCESS.2019.2921447 [11] NA Dongjun and CHOI K. DFT spreading-based Low PAPR FBMC with embedded side information[J]. IEEE Transactions on Communications, 2020, 68(3): 1731–1745. doi: 10.1109/TCOMM.2019.2918526 [12] FARHANG-BOROUJENY B. OFDM versus filter bank multicarrier[J]. IEEE Signal Processing Magazine, 2011, 28(3): 92–112. doi: 10.1109/MSP.2011.940267 [13] BELLANGE R M, LERUYET D, ROVIRAS D, et al. FBMC physical layer: A primer[R]. P7-ICT Project PHYDYAS, 2010.