A 130 GHz CMOS Active Vector-Modulation Phase Shifter
-
摘要: 面向毫米波相控阵雷达系统应用,该文基于55 nm CMOS工艺设计了一款工作于130 GHz的有源矢量(VM)合成移相器。该电路包含宽带正交发生器、可变增益放大和矢量合成模块。为提升移相器相位分辨率和移相精度,该电路可变增益放大采用了具有高频宽带属性的共栅放大结构和具有高增益属性的含中和电容的共源共栅放大结构多级级联的形式。为避免移相器在矢量合成时由自身结构特点产生相位断裂而导致移相范围下降,该设计电路在矢量合成模块中融入了数控人工介质(DiCAD)结构。通过全波电磁仿真对所设计毫米波移相器进行验证,在125~135 GHz频率范围内,所设计移相器平均增益大于1 dB,移相器可由控制电压控制实现全360°范围内5.625°的相位步进,RMS相位误差小于4°,电路面积为1100 μm×600 μm,功耗33 mW。Abstract: A 130 GHz active Vector-Modulation (VM) phase shifter based on 55 nm CMOS process is presented for millimeter-wave phased array radar applications. A wideband quadrature generator, there stages variable gain amplifiers and a Gilbert-based summator are exploited in the proposed phase shifter. For improving the phase resolution and accuracy of the phase shifter, multi-stage wide gain-range variable gain amplifiers, which consists of stack common-gate amplifiers and the cascode amplifier based on capacitance neutralization technology, are employed. In addition, the Digital Controlled Artificial Dielectric (DiCAD) structure are also adopted in the proposed phase shifter to cover the phase gap result by VM structure. The full-wave electromagnetic simulation results show that the average gain of the proposed phase shifter is above 1 dB at 125 to 135 GHz. The phase shifting range can cover full 360°with a 5.6° phase step, and the RMS phase error is less than 4° at operating frequency range. The area of the phase shifter is 1100 μm×600 μm, and the power consumption is 33 mW.
-
Key words:
- CMOS /
- Phase shifter /
- Vector-Modulation(VM) /
- Millimeter-wave radar
-
图 1 射频移相架构的相控阵雷达接收系统示意图[1]
表 1 移相器性能比较
序号 频率(GHZ) 工艺 分辨率(°) 增益(dB) RMS相位误差(°) 功耗(mW) 面积(mm2) 文献[5] 57~64 65 nm CMOS 11.25 –16.3 4.4~9.5 0 0.094# 文献[6] 56~65 40 nm CMOS 2.7 –5~–0.4 1.4 38 1.12 文献[7] 80.2~96.8 28 nm SOI 22.5 0.83 <11.9 21.6 0.06# 文献[8] 71.5~84.5 0.13 μm SiGe 5.625 7 1.35~3.5 60 0.82 文献[9] 162~190 130 nm SiGe 22.5 –6.2 <8 9.9~15.3 0.07# 本文* 125~135 55 nm CMOS 5.625 1~2 1.4~4.0 33 0.66 #:核心面积;*:仿真结果。 -
[1] 贾海昆, 池保勇. 硅基毫米波雷达芯片研究现状与发展[J]. 电子与信息学报, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666JIA Haikun and CHI Baoyong. The status and trends of silicon-based millimeter-wave radar SoCs[J]. Journal of Electronics &Information Technology, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666 [2] NATARAJAN A, KOMIJANI A, GUAN X, et al. A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting[J]. IEEE Journal of Solid-State Circuits, 2006, 41(12): 2807–2819. doi: 10.1109/JSSC.2006.884817 [3] PANG Jian, LI Zheng, KUBOZOE R, et al. A 28-GHz CMOS phased-array beamformer utilizing neutralized Bi-directional technique supporting dual-polarized MIMO for 5G NR[J]. IEEE Journal of Solid-State Circuits, 2020, 55(9): 2371–2386. doi: 10.1109/JSSC.2020.2995039 [4] JIA Haikun, KUANG Lixue, ZHU Wei, et al. A 77 GHz frequency doubling two-path phased-array FMCW transceiver for automotive radar[J]. IEEE Journal of Solid-State Circuits, 2016, 51(10): 2299–2311. doi: 10.1109/JSSC.2016.2580599 [5] MENG Fanyi, MA Kaixue, YEO K S, et al. A 57-to-64-GHz 0.094-mm2 5-bit passive phase shifter in 65-nm CMOS[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(5): 1917–1925. doi: 10.1109/TVLSI.2015.2469158 [6] WANG Bindi, GAO H, MATTERS-KAMMERER M K, et al. A 60 GHz 360° phase shifter with 2.7° phase resolution and 1.4° RMS phase error in a 40-nm CMOS technology[C]. IEEE Radio Frequency Integrated Circuits Symposium, Philadelphia, USA, 2018: 144–147. doi: 10.1109/RFIC.2018.8428980. [7] PEPE D and ZITO D. Two mm-wave vector modulator active phase shifters with novel IQ generator in 28 nm FDSOI CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(2): 344–356. doi: 10.1109/JSSC.2016.2605659 [8] LI Huanbo, CHEN Jixin, HOU Debin, et al. A W-band 6-bit phase shifter with 7 dB gain and 1.35° RMS phase error in 130 nm SiGe BiCMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(10): 1839–1843. doi: 10.1109/TCSII.2019.2944166. [9] TESTA P V, CARTA C, and ELLINGER F. A 160–190-GHz vector-modulator phase shifter for low-power applications[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(1): 86–89. doi: 10.1109/LMWC.2019.2952766 [10] LI Xuguang and FU Haipeng. A 100-GHz full 360° reflection-type phase shifter using a balanced phase inverter[J]. Microwave and Optical Technology Letters, 2020, 62(5): 1935–1939. doi: 10.1002/mop.32263 [11] KIM S Y, KANG D W, KOH K J, et al. An improved wideband all-pass I/Q network for millimeter-wave phase shifters[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(11): 3431–3439. doi: 10.1109/tmtt.2012.2212027 [12] MOHSENPOUR M M and SAAVEDRA C E. Variable 360° vector-sum phase shifter with coarse and fine vector scaling[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7): 2113–2120. doi: 10.1109/TMTT.2016.2574843 [13] CHAN W L and LONG J R. A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 554–564. doi: 10.1109/JSSC.2009.2039274 [14] HUANG Daquan, HANT W, WANG Ningyi, et al. A 60 GHz CMOS VCO using on-chip resonator with embedded artificial dielectric for size, loss and noise reduction[C]. IEEE International Solid State Circuits Conference, San Francisco, USA, 2006. doi: 10.1109/ISSCC.2006.1696168. [15] LAROCCA T, TAM S W, HUANG Daquan, et al. Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs[C]. IEEE MTT-S International Microwave Symposium Digest, Atlanta, USA, 2008: 181–184. doi: 10.1109/MWSYM.2008.4633133.