高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进贝叶斯非负Tikhonov正则化方法的同轴电缆信号传输畸变补偿研究

秦风 高原 吴双

秦风, 高原, 吴双. 基于改进贝叶斯非负Tikhonov正则化方法的同轴电缆信号传输畸变补偿研究[J]. 电子与信息学报, 2021, 43(8): 2199-2206. doi: 10.11999/JEIT210068
引用本文: 秦风, 高原, 吴双. 基于改进贝叶斯非负Tikhonov正则化方法的同轴电缆信号传输畸变补偿研究[J]. 电子与信息学报, 2021, 43(8): 2199-2206. doi: 10.11999/JEIT210068
Feng QIN, Yuan GAO, Shuang WU. Signal Compensation of Coaxial Cable Based on Modified Non-negative Tikhonov Regularization Method within Bayesian Inference[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2199-2206. doi: 10.11999/JEIT210068
Citation: Feng QIN, Yuan GAO, Shuang WU. Signal Compensation of Coaxial Cable Based on Modified Non-negative Tikhonov Regularization Method within Bayesian Inference[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2199-2206. doi: 10.11999/JEIT210068

基于改进贝叶斯非负Tikhonov正则化方法的同轴电缆信号传输畸变补偿研究

doi: 10.11999/JEIT210068
基金项目: 中国工程物理研究院复杂电磁环境科学与技术重点实验室基金项目(FZSYS-02)
详细信息
    作者简介:

    秦风:男,1985年生,副研究员,研究方向为电磁脉冲环境测试、电磁环境效应及防护

    高原:男,1989年生,助理研究员,研究方向为电磁脉冲环境仿真与测试

    吴双:男,1993年生,初级工,研究方向为电磁环境测试

    通讯作者:

    高原 18142550916@163.com

  • 中图分类号: O441.5; TM935.4

Signal Compensation of Coaxial Cable Based on Modified Non-negative Tikhonov Regularization Method within Bayesian Inference

Funds: Foundation of Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics (FZSYS-02)
  • 摘要: 随着信号频率、带宽及传输距离的增大,信号在同轴电缆传输过程中的畸变问题变得越来越严重。特别地,如果同轴电缆在使用过程中还意外地遭受了挤压、拉伸或折叠,信号畸变问题将会变得更加严重。该文基于贝叶斯推理的非负Tikhonov正则化方法,提出一种改进的信号补偿方法。该方法可有效规避逆分析中的病态矩阵问题,利用同轴电缆的冲击响应函数,并结合输出端口的测量信号,即可实现输入信号的重构。并以长度15 m的受挤压同轴电缆为对象,采用此方法对3种不同样式的脉冲信号(双指数脉冲信号、调制方波信号、双极脉冲信号)进行了传输畸变补偿。结果表明:该方法均能实现优异的补偿效果,补偿后信号与输入信号间偏差远远低于传统的衰减补偿法。并且,该方法具有较强的鲁棒性,当信噪比大于30 dB时,即可保持好的稳定性。
  • 图  1  改进方法的算法流程

    图  2  受挤压的15 m被测同轴电缆

    图  3  实验测试设置示意图

    图  4  同轴电缆脉冲冲击响应计算

    图  5  双指数脉冲信号在受挤压15 m同轴电缆中的传输畸变补偿

    图  6  改进补偿法对于不同类型信号的畸变补偿

    图  7  改进补偿法与衰减补偿法的补偿效果对比

    表  1  输出信号、采用改进补偿方法补偿后信号与输入信号间相对偏差(%)

    信号样式输出与输入信号偏差补偿与输入信号偏差
    双指数脉冲信号16.51.5
    调制方波信号24.42.4
    双极脉冲信号25.32.3
    下载: 导出CSV

    表  2  不同补偿方法补偿后信号与输入信号间相对偏差(%)

    信号样式改进补偿法衰减补偿法
    双指数脉冲信号1.5 9.0
    调制方波信号2.410.5
    双极脉冲信号2.313.3
    下载: 导出CSV

    表  3  不同信噪比下改进补偿方法补偿后信号与输入信号间相对偏差(%)

    信号样式45 dB40 dB35 dB30 dB25 dB20 dB
    双指数脉冲信号1.51.51.73.411.117.0
    调制方波信号2.42.52.86.319.133.1
    双极脉冲信号2.32.53.06.518.628.3
    下载: 导出CSV

    表  4  不同信噪比下衰减补偿法补偿后信号与输入信号间相对偏差(%)

    信号样式45 dB40 dB35 dB30 dB25 dB20 dB
    双指数脉冲信号 9.0 9.312.017.222.031.0
    调制方波信号10.511.115.522.527.535.5
    双极脉冲信号13.313.716.324.329.336.3
    下载: 导出CSV
  • [1] XIAO Pei, DU Pingan, and ZHANG Bingxue. An analytical method for radiated electromagnetic and shielding effectiveness of braided coaxial cable[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(1): 121–127. doi: 10.1109/TEMC.2018.2814629
    [2] 王亚平, 蔡勖. ALICE实验中同轴电缆的信号传输特性的研究[J]. 核电子学与探测技术, 2006, 26(2): 195–198. doi: 10.3969/j.issn.0258-0934.2006.02.019

    WANG Yaping and CAI Xu. Study of signal transmission properties of a coaxial cable in ALICE experiment[J]. Nuclear Electronics &Detection Technology, 2006, 26(2): 195–198. doi: 10.3969/j.issn.0258-0934.2006.02.019
    [3] SATO S, YAMAGUCHI T, NISHIMURA S, et al. Influence of measuring cable on lightning impulse parameters[J]. Electronics and Communications in Japan, 2010, 93(6): 1–7. doi: 10.1002/ecj.10288
    [4] 戈弋, 黄华, 袁欢. 温度和机械弯曲引起的同轴电缆相位变化特性[J]. 太赫兹科学与电子信息学报, 2019, 17(4): 621–626. doi: 10.11805/TKYDA201904.0621

    GE Yi, HUANG Hua, and YUAN Huan. Phase characteristics of coaxial cable caused by temperature and mechanical bending[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(4): 621–626. doi: 10.11805/TKYDA201904.0621
    [5] 贾文超, 董冰, 李林. 同轴电缆形变TDR监测技术的研究与实现[J]. 计算机测量与控制, 2007, 15(10): 1276–1278. doi: 10.3969/j.issn.1671-4598.2007.10.004

    JIA Wenchao, DONG Bing, and LI Lin. Research and realization of coaxial-cable deformation TDR monitoring technology[J]. Computer Measurement &Control, 2007, 15(10): 1276–1278. doi: 10.3969/j.issn.1671-4598.2007.10.004
    [6] 陈云敏, 梁志刚, 陈仁朋, 等. 有缺陷同轴电缆的时域反射特性及应用[J]. 浙江大学学报: 工学版, 2005, 39(1): 51–56, 64.

    CHEN Yunmin, LIANG Zhigang, CHEN Renpeng, et al. Time domain reflectometry property of defective coaxial cable and its applications[J]. Journal of Zhejiang University:Engineering Science, 2005, 39(1): 51–56, 64.
    [7] CHOO J, CHOO J, and KIM Y H. Evaluation of electromagnetic interference from axially ruptured coaxial cable with multiple dielectrics used in nuclear power plants[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(3): 860–869. doi: 10.1109/TEMC.2018.2835665
    [8] 渠红光, 李宪优, 田耕, 等. 基于衰减特性的电缆传输畸变软件补偿[J]. 装备指挥技术学院学报, 2010, 21(2): 87–90.

    QU Hongguang, LI Xianyou, TIAN Geng, et al. Attenuation compensation by software based on the character of transfers of the cable[J]. Journal of the Academy of Equipment Command &Technology, 2010, 21(2): 87–90.
    [9] 付佳斌, 卿燕玲, 卫兵, 等. 同轴电缆测量纳秒脉冲信号衰减的数字补偿[J]. 强激光与粒子束, 2011, 23(10): 2826–2830. doi: 10.3788/HPLPB20112310.2826

    FU Jiabin, QING Yanlin, WEI Bing, et al. Numerical compensation for coaxial cable signal degradation[J]. High Power Laser and Particle Beams, 2011, 23(10): 2826–2830. doi: 10.3788/HPLPB20112310.2826
    [10] 黄豹. 新的高频同轴电缆补偿原理[J]. 核电子学与探测技术, 1985, 5(4): 193–198.

    HUANG Bao. New principle of high frequency coaxial cable equalization[J]. Nuclear Electronics &Detection Technology, 1985, 5(4): 193–198.
    [11] WHALLEY W B. Color-television coaxial cable termination and equalization[J]. SMPTE Journal 1955, 1995, 64(1): 8–12.
    [12] SARKAR T K, TSENG F I, RAO S M, et al. Deconvolution of impulse response from time-limited input and output: Theory and experiment[J]. IEEE Transactions on Instrumentation and Measurement, 1985, IM-34(4): 541–546. doi: 10.1109/TIM.1985.4315400
    [13] 王园, 朱江淼. 应用反卷积实现脉冲计量中的信号重构与系统辨识[J]. 信号处理, 2013, 29(4): 532–535. doi: 10.3969/j.issn.1003-0530.2013.04.017

    WANG Yuan and ZHU Jiangmiao. Signal reconstruction and system identification using the deconvolution in pulse metrology[J]. Signal Processing, 2013, 29(4): 532–535. doi: 10.3969/j.issn.1003-0530.2013.04.017
    [14] THOMPSON A M and KAY J. On some Bayesian choices of regularization parameter in image restoration[J]. Inverse Problems, 1993, 9(6): 749–761. doi: 10.1088/0266-5611/9/6/011
    [15] YAN Gang and SUN Hao. A non-negative Bayesian learning method for impact force reconstruction[J]. Journal of Sound and Vibration, 2019, 457: 354–367. doi: 10.1016/j.jsv.2019.06.013
    [16] 骆睿, 刘莉, 佟瑞, 等. 基于Tikhonov正则化的高分辨率群时延测量与计算方法[J]. 电子学报, 2019, 47(5): 1044–1048. doi: 10.3969/j.issn.0372-2112.2019.05.010

    LUO Rui, LIU Li, TONG Rui, et al. High-resolution group delay measurement and calculation method based on Tikhonov regularization[J]. Acta Electronica Sinica, 2019, 47(5): 1044–1048. doi: 10.3969/j.issn.0372-2112.2019.05.010
    [17] 韩玉兵, 吴乐南, 张冬青. 基于正则化处理的超分辨率重建[J]. 电子与信息学报, 2007, 29(7): 1713–1716.

    HAN Yubing, WU Lenan, and ZHANG Dongqing. Super-resolution reconstruction based on regularization[J]. Journal of Electronics &Information Technology, 2007, 29(7): 1713–1716.
    [18] 王鹏宇, 宋千, 周智敏. 基于多测量动态聚类的压缩感知增强成像方法[J]. 电子与信息学报, 2013, 35(11): 2664–2671.

    WANG Pengyu, SONG Qian, and ZHOU Zhimin. Enhanced compressive imaging approach based on multi-measurement and dynamic clustering[J]. Journal of Electronics &Information Technology, 2013, 35(11): 2664–2671.
    [19] JOHNSTON P R and GULRAJANI R M. Selecting the corner in the L-curve approach to Tikhonov regularization[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1293–1296. doi: 10.1109/10.867966
    [20] 王师萍. 带非负限制的增广Tikhonov正则化方法[D]. [硕士论文], 上海交通大学, 2010.

    WANG Shiping. Augmented Tikhonov regularization with nonnegative constraints[D]. [Master dissertation], Shanghai Jiao Tong University, 2010.
    [21] WANG Jingbo and ZABARAS N. Hierarchical Bayesian models for inverse problems in heat conduction[J]. Inverse Problems, 2005, 21(1): 183–206. doi: 10.1088/0266-5611/21/1/012
    [22] JIN Bangti and ZOU Jun. A Bayesian inference approach to the ill-posed Cauchy problem of steady-state heat conduction[J]. International Journal for Numerical Methods in Engineering, 2008, 76(4): 521–544. doi: 10.1002/nme.2350
    [23] JIN Bangti and ZOU Jun. Augmented Tikhonov regularization[J]. Inverse Problems, 2009, 25(2): 025001. doi: 10.1088/0266-5611/25/2/025001
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  974
  • HTML全文浏览量:  333
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-03-31
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回