高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏步进调频信号的低信噪比逆合成孔径雷达成像

王樾 白雪茹 周峰

王樾, 白雪茹, 周峰. 基于稀疏步进调频信号的低信噪比逆合成孔径雷达成像[J]. 电子与信息学报, 2022, 44(3): 1034-1043. doi: 10.11999/JEIT210056
引用本文: 王樾, 白雪茹, 周峰. 基于稀疏步进调频信号的低信噪比逆合成孔径雷达成像[J]. 电子与信息学报, 2022, 44(3): 1034-1043. doi: 10.11999/JEIT210056
WANG Yue, BAI Xueru, ZHOU Feng. High-resolution Inverse Synthetic Aperture Radar Imaging with Sparse Stepped-frequency Chirp Signals under Low Signal to Noise Ratio[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1034-1043. doi: 10.11999/JEIT210056
Citation: WANG Yue, BAI Xueru, ZHOU Feng. High-resolution Inverse Synthetic Aperture Radar Imaging with Sparse Stepped-frequency Chirp Signals under Low Signal to Noise Ratio[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1034-1043. doi: 10.11999/JEIT210056

基于稀疏步进调频信号的低信噪比逆合成孔径雷达成像

doi: 10.11999/JEIT210056
基金项目: 国家自然科学基金(61971332, 61631019)
详细信息
    作者简介:

    王樾:男,1995年生,硕士,研究方向为ISAR成像

    白雪茹:女,1984年生,教授,研究方向为高分辨雷达成像、雷达目标识别

    周峰:男,1980年生,教授,研究方向为电子对抗、雷达成像

    通讯作者:

    周峰 fzhou@mail.xidian.edu.cn

  • 中图分类号: TN957

High-resolution Inverse Synthetic Aperture Radar Imaging with Sparse Stepped-frequency Chirp Signals under Low Signal to Noise Ratio

Funds: The National Natural Science Foundation of China (61971332, 61631019)
  • 摘要: 针对稀疏步进调频信号对目标径向运动敏感且低信噪比(SNR)下难以聚焦成像的问题,该文提出基于遗传算法和稀疏贝叶斯学习的平动补偿与高分辨逆合成孔径雷达(ISAR)成像方法。首先,针对稀疏步进调频信号建立回波模型和稀疏观测模型,通过构造参数化字典,将ISAR成像问题转换为目标运动参数估计与高分辨距离像(HRRP)合成的联合问题。然后,对目标高分辨距离像引入Gamma-Gauss先验,并采用变分贝叶斯推断(VBI)对散射点进行估计。在此基础上,通过遗传算法迭代同步获得目标运动参数与高质量HRRP,最终实现高分辨聚焦成像和运动参数精确估计。不同场景下的仿真和实测数据处理结果验证了所提算法的有效性。
  • 图  1  概率图模型

    图  2  稀疏向量θ

    图  3  3种算法相应相变图

    图  4  3种算法平均重构误差随SNR变化曲线

    图  5  目标散射点分布图

    图  6  速度加速度估计误差随SNR变化曲线

    图  7  仿真数据波形1成像结果

    图  8  仿真数据波形2成像结果

    图  9  飞机全频带实测数据成像结果

    图  10  飞机实测数据波形1成像结果

    图  11  飞机实测数据波形2成像结果

    表  1  所提算法伪代码

     算法:基于稀疏步进调频信号的低信噪比ISAR成像
     (1) 初始化种群$\left( {\Delta {{\hat v}_{\rm{R}}},\Delta {{\hat a}_{\rm{R}}}} \right)$, ${v_1}$, ${v_2}$, ${v_3}$, ${v_4}$, ${\boldsymbol{\varLambda}} $, $\alpha $, ${{{G}}_{\rm{1}}}$, ${{{G}}_{\rm{2}}}$, ${\eta _1}$。
     (2) For iter1=1:${{{G}}_{\rm{1}}}$
       (a) For k=1:${{K}}$
         构造${\boldsymbol{D}}_k^{\left( {{\rm{iter1}}} \right)}\left( {\Delta {{\hat v}_{\rm{R}}},\Delta {{\hat a}_{\rm{R}}}} \right)$;
         For iter2=1:${{{G}}_{\rm{2}}}$
           利用式(22)更新$\alpha $;
           利用式(24)更新${\boldsymbol{\varLambda}} $;
           利用式(26)更新${\boldsymbol{\theta}} $;
             若$\hat {\boldsymbol{\theta}} _k^{\left( {{\rm{iter1}}} \right)}$相对于前一次估计的变化量小于${\eta _1}$则停止循环;
           End
         End
       (b) 构建距离像矩阵${\boldsymbol{s} }_{\rm{r} }^{\left( { {\rm{iter1} } } \right)}\left( {\Delta { {\hat v}_{\rm{R} } },\Delta { {\hat a}_{\rm{R} } } } \right) = \left[ { {\boldsymbol{\theta} } _{\rm{1} }^{\left( { {\rm{iter1} } } \right)},{\boldsymbol{\theta} } _{\rm{2} }^{\left( { {\rm{iter1} } } \right)}, \cdots,{\boldsymbol{\theta} } _K^{\left( { {\rm{iter1} } } \right)} } \right]$,得${I^{\left( {{\rm{iter1}}} \right)}}\left( {\Delta {{\hat v}_{\rm{R}}},\Delta {{\hat a}_{\rm{R}}}} \right)$;
       (c) 根据式(18)计算图像熵;
       (d) 保留图像熵较小的个体并更新种群;
       (e) 判断是否达到循环次数${{{G}}_{\rm{1}}}$;
       End
     (3) 实现高分辨ISAR成像。
    下载: 导出CSV

    表  2  运算复杂度对比

    重构算法OMPGDVBI
    运算复杂度${\cal{O}}\left( {{k_0}{L^2}} \right)$${\cal{O}}\left( {{L^{\rm{3}}}} \right)$${\cal{O}}\left( {{L^{\rm{3}}}} \right)$
    下载: 导出CSV

    表  3  雷达系统参数

    ${f_{\rm{c}}}$${\rm{PRF}}$${T_{\rm{R}}}$$B$$\Delta f$
    10 GHz6.4 kHz20 μs800 MHz10 MHz
    下载: 导出CSV

    表  4  Yak-42飞机剩余速度估计值表

    本文算法算法1
    波形1(m/s)9.97639.8973
    波形2(m/s)9.96199.7503
    下载: 导出CSV

    表  5  Yak-42飞机剩余加速度估计值表

    本文算法算法1
    波形1(m/s2)0.99751.1147
    波形2(m/s2)0.99941.2095
    下载: 导出CSV

    表  6  不同算法对Yak-42飞机实测数据成像的图像熵

    OMPGDVBI
    波形10.27570.21080.1963
    波形20.20860.19570.1767
    下载: 导出CSV
  • [1] BAI Xueru, ZHOU Xuening, ZHANG Feng, et al. Robust pol-ISAR target recognition based on ST-MC-DCNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9912–9927. doi: 10.1109/TGRS.2019.2930112
    [2] 王天云, 陆新飞, 孙麟, 等. 基于贝叶斯压缩感知的ISAR自聚焦成像[J]. 电子与信息学报, 2015, 37(11): 2719–2726. doi: 10.11999/JEIT150235

    WANG Tianyun, LU Xinfei, SUN Lin, et al. An autofocus imaging method for ISAR based on Bayesian compressive sensing[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2719–2726. doi: 10.11999/JEIT150235
    [3] LUO Ying, ZHANG Qun, QIU Chengwei, et al. Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2087–2098. doi: 10.1109/TGRS.2009.2034367
    [4] ZHANG Lei, XING Mengdao, QIU Chengwei, et al. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3824–3838. doi: 10.1109/TGRS.2010.2048575
    [5] FU Wei, JIANG Defu, GAO Yiyue, et al. An adaptive optimal waveform design algorithm based on frequency-stepped chirp signal[J]. IET Radar, Sonar & Navigation, 2019, 13(6): 892–899. doi: 10.1049/iet-rsn.2018.5410
    [6] WEI Shaopeng, ZHANG Lei, MA Hui, et al. Sparse frequency waveform optimization for high-resolution ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 546–566. doi: 10.1109/TGRS.2019.2937965
    [7] JEONG H R, KIM H T, and KIM K T. Application of subarray averaging and entropy minimization algorithm to stepped-frequency ISAR autofocus[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 1144–1154. doi: 10.1109/TAP.2008.919208
    [8] LIU Yabo, XING Mengdao, ZHANG Leiyong, et al. Novel range profile synthesis algorithm for linearly stepped-frequency modulated inversed synthetic aperture radar imaging of remote manoeuvring target[J]. IET Radar, Sonar & Navigation, 2011, 5(4): 496–506. doi: 10.1049/iet-rsn.2010.0013
    [9] LIAO Zhikun, HU Jiemin, LU Dawei, et al. Motion analysis and compensation method for random stepped frequency radar using the pseudorandom code[J]. IEEE Access, 2018, 6: 57643–57654. doi: 10.1109/ACCESS.2018.2873784
    [10] KANG M S, LEE S J, LEE S H, et al. ISAR imaging of high-speed maneuvering target using gapped stepped-frequency waveform and compressive sensing[J]. IEEE Transactions on Image Processing, 2017, 26(10): 5043–5056. doi: 10.1109/TIP.2017.2728182
    [11] 李瑞, 张群, 苏令华, 等. 基于稀疏贝叶斯学习的双基雷达关联成像[J]. 电子与信息学报, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933

    LI Rui, ZHANG Qun, SU Linghua, et al. Bistatic radar coincidence imaging based on sparse Bayesian learning[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933
    [12] BAI Xueru, ZHANG Yu, and ZHOU Feng. High-resolution radar imaging in complex environments based on Bayesian learning with mixture models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 972–984. doi: 10.1109/TGRS.2018.2863743
    [13] LI Yuanyuan, FU Yaowen, and ZHANG Wenpeng. High-resolution distributed ISAR imaging by OMP method[J]. The Journal of Engineering, 2019, 2019(19): 6138–6142. doi: 10.1049/joe.2019.0380
    [14] ZHU Feng, ZHANG Qun, LEI Qiang, et al. Reconstruction of moving target’s HRRP using sparse frequency-stepped chirp signal[J]. IEEE Sensors Journal, 2011, 11(10): 2327–2334. doi: 10.1109/JSEN.2011.2136375
    [15] ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4630–4651. doi: 10.1109/TGRS.2011.2151865
    [16] ZHANG Shuanghui, LIU Yongxiang, LI Xiang, et al. Bayesian high resolution range profile reconstruction of high-speed moving target from under-sampled data[J]. IEEE Transactions on Image Processing, 2020, 29: 5110–5120. doi: 10.1109/TIP.2020.2980149
    [17] NING Yu, BAI Xueru, ZHOU Feng, et al. Method for inverse synthetic aperture radar imaging of space debris using improved genetic algorithm[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 812–821. doi: 10.1049/iet-rsn.2016.0048
    [18] SUN Lin and CHEN Weidong. Improved Bayesian ISAR imaging by learning the local structures of the target scene[J]. IEEE Sensors Journal, 2019, 19(19): 8865–8877. doi: 10.1109/JSEN.2019.2919572
    [19] ZHOU Feng, BAI Xueru, XING Mengdao, et al. Analysis of wide-angle radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5(4): 449–457. doi: 10.1049/iet-rsn.2010.0076
    [20] 杨磊, 夏亚波, 毛欣瑶, 等. 基于分层贝叶斯Lasso的稀疏ISAR成像算法[J]. 电子与信息学报, 2021, 43(3): 623–631. doi: 10.11999/JEIT200292

    YANG Lei, XIA Yabo, MAO Xinyao, et al. Sparse ISAR imaging algorithm based on Bayesian-lasso[J]. Journal of Electronics &Information Technology, 2021, 43(3): 623–631. doi: 10.11999/JEIT200292
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  420
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-03-31
  • 网络出版日期:  2021-04-19
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回