高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于协同注意力的小样本的手机屏幕缺陷分割

许国良 毛骄

许国良, 毛骄. 基于协同注意力的小样本的手机屏幕缺陷分割[J]. 电子与信息学报, 2022, 44(4): 1476-1483. doi: 10.11999/JEIT210054
引用本文: 许国良, 毛骄. 基于协同注意力的小样本的手机屏幕缺陷分割[J]. 电子与信息学报, 2022, 44(4): 1476-1483. doi: 10.11999/JEIT210054
XU Guoliang, MAO Jiao. Few-Shot Segmentation on Mobile Phone Screen Defect Based on Co-Attention[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1476-1483. doi: 10.11999/JEIT210054
Citation: XU Guoliang, MAO Jiao. Few-Shot Segmentation on Mobile Phone Screen Defect Based on Co-Attention[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1476-1483. doi: 10.11999/JEIT210054

基于协同注意力的小样本的手机屏幕缺陷分割

doi: 10.11999/JEIT210054
基金项目: 重庆市技术创新与应用示范(产业类重点研发)项目(cstc2018jszx-cyzdX0124)
详细信息
    作者简介:

    许国良:男,1973年生,教授,硕士生导师,研究方向为光电传感与检测、通信网络设计与规划、大数据分析挖掘

    毛骄:女,1997年生,硕士生,研究方向为深度学习、图像处理

    通讯作者:

    许国良 xugl@cqupt.edu.cn

  • 中图分类号: TN911.73; TP391.4

Few-Shot Segmentation on Mobile Phone Screen Defect Based on Co-Attention

Funds: The Chongqing Technology Innovation and Application Demonstration Special Project -- Key Industrial R&D Projects (cstc2018jszx-cyzdX0124)
  • 摘要: 在手机屏幕工业化生产过程中,缺陷检测的好坏直接影响手机屏幕的合格率。少量的缺陷样本不足以完成数据驱动的分割网络的训练,因此如何利用少量的缺陷图像完成缺陷分割成为关键问题。该文针对此问题提出一种基于协同注意力的小样本手机屏幕缺陷分割网络(Co-ASNet)。该网络使用交叉注意力块在特征提取时获取更加丰富的上下文缺陷特征信息,同时引入了协同注意力的方式来加强支持图像与查询图像相同缺陷目标之间的特征信息交互,增强缺陷特征表示,另外,使用了改进的联合损失函数来完成网络的训练。该文采用手机屏幕缺陷数据集进行实验,实验结果表明,Co-ASNet能够使用少量的缺陷样本完成良好的缺陷分割效果。
  • 图  1  基于协同注意力的小样本手机屏幕缺陷分割网络的网络架构图

    图  2  特征提取模块示意图

    图  3  交叉注意力块示意图

    图  4  特征增强模块架构图

    图  5  编码-解码过程示意图

    图  6  不同分割网络对手机屏幕缺陷图像的分割效果可视化

    图  7  1-shot下的手机屏幕缺陷图像的分割效果可视化

    图  8  5-shot下的手机屏幕缺陷图像的分割效果可视化

    表  1  手机屏幕缺陷图像数据集

    类别线
    缺陷图像
    掩膜图像
    下载: 导出CSV

    表  2  不同分割网络模型在手机屏幕缺陷数据集的性能比较

    模型PAMPAMIoUFWMIoU
    U-net0.96100.46350.40740.9334
    SG-One(1-shot)0.96580.53920.46470.9412
    SG-One(5-shot)0.96690.51990.46220.9432
    Co-ASNet(1-shot)0.97120.64350.55880.9489
    Co-ASNet(5-shot)0.97090.67110.57710.9482
    下载: 导出CSV

    表  3  在手机屏幕缺陷图像数据集上的分割结果(MIoU)

    模型1-shot5-shot
    SG-One0.46470.4622
    SG-One + cc-block0.52440.5592
    SG-One + co-a ($L{\rm{ }} = {l_{{\rm{query}}}}$)0.45630.4584
    SG-One + co-a0.54760.5701
    Co-ASNet($L{\rm{ }} = {l_{{\rm{query}}}}$)0.49880.5380
    Co-ASNet0.55880.5771
    下载: 导出CSV
  • [1] TABERNIK D, ŠELA S, SKVARČ J, et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 759–776. doi: 10.1007/s10845-019-01476-x
    [2] YU Zhiyang, WU Xiaojun, and GU Xiaodong. Fully convolutional networks for surface defect inspection in industrial environment[C]. 11th International Conference on Computer Vision Systems, Shenzhen, China, 2017: 417-426.
    [3] QIU Lingteng, WU Xiaojun, and YU Zhiyang. A high-efficiency fully convolutional networks for pixel-wise surface defect detection[J]. IEEE Access, 2019, 7: 15884–15893. doi: 10.1109/ACCESS.2019.2894420
    [4] 张宏伟, 汤文博, 李鹏飞, 等. 基于去噪卷积自编码器的色织衬衫裁片缺陷检测[J]. 纺织高校基础科学学报, 2019, 32(2): 119–125, 132.

    ZHANG Hongwei, TANG Wenbo, LI Pengfei, et al. Defect detection and location of yarn-dyed shirt piece based on denoising convolutional autoencoder[J]. Basic Sciences Journal of Textile Universities, 2019, 32(2): 119–125, 132.
    [5] ZHAO Zhixuan, LI Bo, DONG Rong, et al. A surface defect detection method based on positive samples[C]. The 15th Pacific Rim International Conference on Artificial Intelligence, Nanjing, China, 2018: 473-481.
    [6] YANG Hua, CHEN Yifan, SONG Kaiyou, et al. Multiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defects[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1450–1467. doi: 10.1109/TASE.2018.2886031
    [7] HU Guanghua, HUANG Junfeng, WANG Qinghui, et al. Unsupervised fabric defect detection based on a deep convolutional generative adversarial network[J]. Textile Research Journal, 2020, 90(3/4): 247–270.
    [8] 刘宇轩, 孟凡满, 李宏亮, 等. 一种结合全局和局部相似性的小样本分割方法[J]. 北京航空航天大学学报, 2021, 47(3): 665–674.

    LIU Yuxuan, MENG Fanman, LI Hongliang, et al. A few shot segmentation method combining global and local similarity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 665–674.
    [9] 董阳, 潘海为, 崔倩娜, 等. 面向多模态磁共振脑瘤图像的小样本分割方法[J]. 计算机应用, 2021, 41(4): 1049–1054.

    DONG Yang, PAN Haiwei, CUI Qianna, et al. Few-shot segmentation method for multi-modal magnetic resonance images of brain Tumor[J]. Journal of Computer Applications, 2021, 41(4): 1049–1054.
    [10] 罗善威, 陈黎. 基于双重相似度孪生网络的小样本实例分割[J]. 武汉科技大学学报, 2020, 43(1): 59–66.

    LUO Shanwei and CHEN Li. Few-shot instance segmentation based on double similarity Siamese network[J]. Journal of Wuhan University of Science and Technology, 2020, 43(1): 59–66.
    [11] SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    [12] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241.
    [13] BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
    [14] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. arXiv preprint arXiv:1412.7062, 2014.
    [15] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, , 2017, 40(4): 834–848.
    [16] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv: 1706.05587, 2017.
    [17] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 833-851.
    [18] REN Mengye, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[J]. arXiv preprint arXiv: 1803.00676, 2018.
    [19] FINN C, ABBEEL P, and LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1126-1135.
    [20] NICHOL A and SCHULMAN J. Reptile: A scalable metalearning algorithm[J]. arXiv preprint arXiv: 1803.02999, 2018.
    [21] SNELL J, SWERSKY K, and ZEMEL Z. Prototypical networks for few-shot learning[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS), Long Beach, USA, 2017: 4080-4090.
    [22] SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: Relation network for few-shot learning[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1199-1208.
    [23] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, 2016: 3637-3645.
    [24] SHABAN A, BANSAL S, LIU Zhen, et al. One-shot learning for semantic segmentation[J]. arXiv preprint arXiv: 1709.03410, 2017.
    [25] RAKELLY K, SHELHAMER E, DARRELL T, et al. Conditional networks for few-shot semantic segmentation[C]. Sixth International Conference on Learning Representations, Vancouver, Canada, 2018.
    [26] ZHANG Xiaolin, WEI Yunchao, YANG Yi, et al. SG-One: Similarity guidance network for one-shot semantic segmentation[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3855–3865. doi: 10.1109/TCYB.2020.2992433
    [27] ZHANG Chi, LIN Guosheng, LIU Fayao, et al. CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 5212-5221.
    [28] WANG Kaixin, LIEW J H, ZOU Yingtian, et al. PANet: Few-shot image semantic segmentation with prototype alignment[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019: 9196-9205.
    [29] NGUYEN K and TODOROVIC S. Feature weighting and boosting for few-shot segmentation[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019: 622-631.
    [30] LIU Weide, ZHANG Chi, LIN Guosheng, et al. CRNet: Cross-reference networks for few-shot segmentation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 4164-4172.
    [31] HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNet: Criss-cross attention for semantic segmentation[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019: 603-612.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1116
  • HTML全文浏览量:  675
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-05-28
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回