高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度池化和范数注意力机制的遥感图像检索

葛芸 马琳 叶发茂 储珺

葛芸, 马琳, 叶发茂, 储珺. 基于多尺度池化和范数注意力机制的遥感图像检索[J]. 电子与信息学报, 2022, 44(2): 543-551. doi: 10.11999/JEIT210052
引用本文: 葛芸, 马琳, 叶发茂, 储珺. 基于多尺度池化和范数注意力机制的遥感图像检索[J]. 电子与信息学报, 2022, 44(2): 543-551. doi: 10.11999/JEIT210052
GE Yun, MA Lin, YE Famao, CHU Jun. Remote Sensing Image Retrieval Based on Multi-scale Pooling and Norm Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 543-551. doi: 10.11999/JEIT210052
Citation: GE Yun, MA Lin, YE Famao, CHU Jun. Remote Sensing Image Retrieval Based on Multi-scale Pooling and Norm Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 543-551. doi: 10.11999/JEIT210052

基于多尺度池化和范数注意力机制的遥感图像检索

doi: 10.11999/JEIT210052
基金项目: 国家自然科学基金(41801288, 41261091),江西省自然科学基金(20202BAB212011, 20202BABL202030),江西省重点研发计划项目(20192BBE50073, 20203BBGL73222)
详细信息
    作者简介:

    葛芸:女,1983年生,博士,副教授,研究方向为遥感图像处理与机器学习

    马琳:女,1996年生,硕士,研究方向为遥感图像处理与机器学习

    叶发茂:男,1978年生,博士,副教授,研究方向为遥感图像处理、计算机图形学、机器学习

    储珺:女,1967年生,博士,教授,研究方向为图像处理、计算机视觉、计算机图形学和数据融合

    通讯作者:

    储珺 chujun99602@163.com

  • 中图分类号: TN911.73; TP751.1

Remote Sensing Image Retrieval Based on Multi-scale Pooling and Norm Attention Mechanism

Funds: The National Natural Science Foundation of China (41801288, 41261091), The Natural Science Foundation of Jiangxi Province (20202BAB212011, 20202BABL202030), The Key Research and Development Project of Jiangxi Province (20192BBE50073, 20203BBGL73222)
  • 摘要: 遥感图像内容丰富,一般的深度模型提取遥感图像特征时容易受复杂背景干扰,对关键特征的提取效果不佳,并且难以表达图像的空间信息,该文提出一种基于多尺度池化和范数注意力机制的深度卷积神经网络,在通道层面与空间层面自适应地给显著特征加权。首先,在多尺度池化通道注意力模块中,结合空间金字塔池化的思想,对每个通道上的特征图进行不同尺度的最大池化。接着,采用自适应均值池化将尺寸不同的特征图转换为统一尺寸,以便通过逐像素相加的方式来关注不同尺度的显著特征。然后,在范数空间注意力模块中,将各通道对应同一空间位置的像素构成向量,通过计算向量组的L1范数和L2范数,获得具有空间信息的特征图。最后,采用级联池化的方法优化高层特征,并将该高层特征用于遥感图像检索。在UC Merced, AID与NWPU-RESISC45 3个数据集上进行实验,结果表明该文所提注意力模型,关注了不同尺度的显著特征,结合了空间信息,提高了检索性能。
  • 图  1  类间相似性大的遥感图像示例

    图  2  多尺度池化和范数注意力机制模型结构

    图  3  多尺度池化通道注意力模块

    图  4  空间注意力模块

    图  5  迁移学习过程

    图  6  示例图像

    图  7  不同方法特征图差异

    图  8  P-R曲线

    表  1  UC Merced数据集和AID数据集不同方法检索结果

    方法UC Merced数据集AID数据集
    mAPANMRRmAPANMRR
    Resnet50-cp0.8120.1630.8500.142
    Resnet50_CBAM-cp0.8700.1100.9200.083
    Resnet50_C-cp0.8980.0840.9350.073
    Resnet50_S-cp0.8920.0730.9360.074
    Resnet50_SC-cp0.9240.0590.9400.068
    注:加粗字体为每列最优结果。
    下载: 导出CSV

    表  2  不同方法的平均检索时间比较(ms)

    方法平均检索时间
    Resnet502.17
    Resnet50_CBAM2.18
    Resnet50_SC2.18
    注:加粗字体为每列最优结果。
    下载: 导出CSV

    表  3  迁移特征的检索结果

    方法全局池化级联池化
    mAPANMRRmAPANMRR
    Resnet50_CBAM0.7630.1900.7900.168
    Resnet50_C0.8000.1610.8090.154
    Resnet50_S0.7890.1690.8120.149
    Resnet50_SC0.8180.1460.8270.138
    注:加粗字体为每列最优结果。
    下载: 导出CSV

    表  4  与其他方法mAP的比较

    方法UC MercedAID
    ResNet_CBAM0.8690.920
    文献[21]0.840
    文献[20]0.918
    文献[6]0.9160.926
    本文Resnet50_SC0.9240.940
    注:加粗字体为每列最优结果。
    下载: 导出CSV
  • [1] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, arXiv: 1409.1556, 2014.
    [2] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770-778.
    [3] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [4] 叶发茂, 董萌, 罗威, 等. 基于卷积神经网络和重排序的农业遥感图像检索[J]. 农业工程学报, 2019, 35(15): 138–145. doi: 10.11975/j.issn.1002-6819.2019.15.018

    YE Famao, DONG Meng, LUO Wei, et al. Agricultural remote sensing image retrieval based on convolutional neural network and reranking[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(15): 138–145. doi: 10.11975/j.issn.1002-6819.2019.15.018
    [5] LI Yansheng, ZHANG Yongjun, HUANG Xin, et al. Large-scale remote sensing image retrieval by deep hashing neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 950–965. doi: 10.1109/TGRS.2017.2756911
    [6] ROY S, SANGINETO E, DEMIR B, et al. Metric-learning-based deep hashing network for content-based retrieval of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 226–230. doi: 10.1109/LGRS.2020.2974629
    [7] 彭晏飞, 宋晓男, 武宏, 等. 结合深度学习与相关反馈的遥感图像检索[J]. 中国图象图形学报, 2019, 24(3): 420–434. doi: 10.11834/jig.180384

    PENG Yanfei, SONG Xiaonan, WU Hong, et al. Remote sensing image retrieval combined with deep learning and relevance feedback[J]. Journal of Image and Graphics, 2019, 24(3): 420–434. doi: 10.11834/jig.180384
    [8] YE Famao, ZHAO Xuqing, LUO Wei, et al. Query-adaptive remote sensing image retrieval based on image rank similarity and image-to-query class similarity[J]. IEEE Access, 2020, 8: 116824–116839. doi: 10.1109/ACCESS.2020.3004360
    [9] MA Chenhui, MU Xiaodong, and SHA Dexuan. Multi-layers feature fusion of convolutional neural network for scene classification of remote sensing[J]. IEEE Access, 2019, 7: 121685–121694. doi: 10.1109/ACCESS.2019.2936215
    [10] LIU Yishu, CHEN Conghui, HAN Zhengzhuo, et al. High-resolution remote sensing image retrieval based on classification-similarity networks and double fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1119–1133. doi: 10.1109/JSTARS.2020.2981372
    [11] 储珺, 朱晓阳, 冷璐, 等. 引入通道注意力和残差学习的目标检测器[J]. 模式识别与人工智能, 2020, 33(10): 889–897. doi: 10.16451/j.cnki.issn1003-6059.202010003

    CHU Jun, ZHU Xiaoyang, LENG Lu, et al. Target detector with channel attention and residual learning[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10): 889–897. doi: 10.16451/j.cnki.issn1003-6059.202010003
    [12] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3–19.
    [13] 翟鹏博, 杨浩, 宋婷婷, 等. 结合注意力机制的双路径语义分割[J]. 中国图象图形学报, 2020, 25(8): 1627–1636. doi: 10.11834/jig.190533

    ZHAI Pengbo, YANG Hao, SONG Tingting, et al. Two-path semantic segmentation algorithm combining attention mechanism[J]. Journal of Image and Graphics, 2020, 25(8): 1627–1636. doi: 10.11834/jig.190533
    [14] WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155–1167. doi: 10.1109/TGRS.2018.2864987
    [15] GUO Yiyou, JI Jingsheng, LU Xiankai, et al. Global-local attention network for aerial scene classification[J]. IEEE Access, 2019, 7: 67200–67212. doi: 10.1109/ACCESS.2019.2918732
    [16] ZHANG Shu, YUAN Qiangqiang, LI Jie, et al. Scene-adaptive remote sensing image super-resolution using a multiscale attention network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4764–4779. doi: 10.1109/TGRS.2020.2966805
    [17] 徐从安, 吕亚飞, 张筱晗, 等. 基于双重注意力机制的遥感图像场景分类特征表示方法[J]. 电子与信息学报, 2021, 43(3): 683–691. doi: 10.11999/JEIT200568

    XU Congan, LÜ Yafei, ZHANG Xiaohan, et al. A Discriminative feature representation method based on dual attention mechanism for remote sensing image scene classification[J]. Journal of Electronics &Information Technology, 2021, 43(3): 683–691. doi: 10.11999/JEIT200568
    [18] ZHANG Yongmei, XU Min, and LI Xiaodong. Remote sensing image retrieval based on DenseNet model and CBAM[C]. 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 2020: 86–90. doi: 10.1109/CCET50901.2020.9213121.
    [19] WANG Yameng, JI Shunping, LU Meng, et al. Attention boosted bilinear pooling for remote sensing image retrieval[J]. International Journal of Remote Sensing, 2020, 41(7): 2704–2724. doi: 10.1080/01431161.2019.1697010
    [20] LIU Chao, MA Jingjing, TANG Xu, et al. Deep hash learning for remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3420–3443. doi: 10.1109/TGRS.2020.3007533
    [21] XIONG Wei, LÜ Yafei, CUI Yaqi, et al. A discriminative feature learning approach for remote sensing image retrieval[J]. Remote Sensing, 2019, 11(3): 281. doi: 10.3390/rs11030281
    [22] GE Yun, TANG Yiling, JIANG Shunliang, et al. Region-based cascade pooling of convolutional features for HRRS image retrieval[J]. Remote Sensing Letters, 2018, 9(10): 1002–1010. doi: 10.1080/2150704X.2018.1504334
    [23] CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
    [24] 孙月驰, 李冠. 基于卷积神经网络嵌套模型的人群异常行为检测[J]. 计算机应用与软件, 2019, 36(3): 196–201, 276. doi: 10.3969/j.issn.1000-386x.2019.03.036

    SUN Yuechi and LI Guan. Abnormal behavior detection of crowds based on nested model of convolutional neural network[J]. Computer Applications and Software, 2019, 36(3): 196–201, 276. doi: 10.3969/j.issn.1000-386x.2019.03.036
    [25] YANG Yi and NEWSAM S. Geographic image retrieval using local invariant features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 818–832. doi: 10.1109/TGRS.2012.2205158
    [26] XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1249
  • HTML全文浏览量:  517
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-07-20
  • 网络出版日期:  2021-07-29
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回