高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻塞干扰双频钝感效应规律与作用机理

赵凯 魏光辉

赵凯, 魏光辉. 阻塞干扰双频钝感效应规律与作用机理[J]. 电子与信息学报, 2022, 44(2): 754-759. doi: 10.11999/JEIT210037
引用本文: 赵凯, 魏光辉. 阻塞干扰双频钝感效应规律与作用机理[J]. 电子与信息学报, 2022, 44(2): 754-759. doi: 10.11999/JEIT210037
ZHAO Kai, WEI Guanghui. Laws and Mechanism of Dual-frequency Insensitive Effect of Blocking Interference[J]. Journal of Electronics & Information Technology, 2022, 44(2): 754-759. doi: 10.11999/JEIT210037
Citation: ZHAO Kai, WEI Guanghui. Laws and Mechanism of Dual-frequency Insensitive Effect of Blocking Interference[J]. Journal of Electronics & Information Technology, 2022, 44(2): 754-759. doi: 10.11999/JEIT210037

阻塞干扰双频钝感效应规律与作用机理

doi: 10.11999/JEIT210037
详细信息
    作者简介:

    赵凯:男,1991年生,博士生,研究方向为装备强电磁场环境效应试验评估

    魏光辉:男,1964年生,教授,研究方向为电磁环境效应试验评估技术、静电与电磁防护技术

    通讯作者:

    魏光辉 wei-guanghui@sohu.com

  • 中图分类号: TN972; TN956; O441.4

Laws and Mechanism of Dual-frequency Insensitive Effect of Blocking Interference

  • 摘要: 该文通过引入幂级数展开式的5阶项对双频干扰下系统非线性失真进行分析,揭示了阻塞干扰产生双频钝感现象的本质原因,并进行了试验验证。理论分析与试验结果表明,当干扰信号强度较弱、系统非线性失真程度较低时,可用精确到3阶项的幂级数展开式描述其传递函数,此时受试装备对双频干扰场强的有效值敏感;随着干扰信号增强,系统非线性失真程度上升,幂级数展开式中的5阶项不可忽略,受试装备对双频干扰出现阻塞效应减弱现象;阻塞程度越高,双频阻塞减弱现象越严重。
  • 图  1  试验配置图

    图  2  峰值电平压缩量随干扰信号2场强的变化

    表  1  以峰值电平压缩1.5 dB为敏感判据试验结果

    Ei/Ei0
    Δf1= 0 Hz0.840.720.660.60
    Δf2 =90 MHz0.560.720.780.82
    R1.021.031.031.04
    Δf1= –150 MHz0.880.760.660.53
    Δf2 =150 MHz0.470.650.780.85
    R1.001.001.041.01
    下载: 导出CSV

    表  2  以峰值电平压缩6 dB为敏感判据试验结果

    Ei/Ei0
    Δf1= 0 Hz1.090.870.770.68
    Δf2 =90 MHz0.720.770.830.90
    R1.711.351.291.27
    Δf1= –150 MHz0.890.800.700.62
    Δf2 =150 MHz0.660.800.850.89
    R1.241.281.211.18
    下载: 导出CSV

    表  3  以峰值电平压缩12 dB为敏感判据试验结果

    Ei/Ei0
    Δf1= 0 Hz1.111.060.910.80
    Δf2 =90 MHz0.991.071.141.16
    R2.222.272.121.98
    Δf1= –150 MHz1.120.840.700.65
    Δf2 =150 MHz0.710.911.051.08
    R1.771.521.591.59
    下载: 导出CSV

    表  4  单频临界干扰场强与选择系数比

    峰值电平压缩量单频临界干扰场强(dBV/m)A1/A2均值
    6 dB12 dB
    Δf1=0 Hz5.4311.181.90
    Δf2=90 MHz11.1016.70
    Δf1=–150 MHz6.1310.932.60
    Δf2=150 MHz14.2619.99
    下载: 导出CSV

    表  5  频偏0 Hz, 90 MHz双频干扰试验结果

    Δf1=0 HzΔf2=90 MHz有效电平差
    (V)
    峰值电平
    压缩量(dB)
    干扰场强
    (dBV/m)
    5.43//5.99
    /11.10/5.98
    –4.2010.562.205.24
    –2.2010.241.785.07
    0.609.340.904.78
    4.304.811.384.99
    干扰场强
    (dBV/m)
    11.18//12.01
    /16.70/11.96
    3.8015.843.2510.15
    5.8015.232.079.58
    6.8014.741.309.30
    8.8012.940.809.13
    下载: 导出CSV

    表  6  频偏–150MHz, 150 MHz双频干扰试验结果

    Δf1=–150 MHzΔf2=150 MHz有效电平差
    (V)
    峰值电平
    压缩量(dB)
    干扰场强
    (dBV/m)
    6.13//6.03
    /14.26/6.00
    –2.2013.712.795.21
    0.8012.851.495.04
    2.3011.990.524.93
    5.305.952.905.08
    干扰场强
    (dBV/m)
    10.93//11.96
    /19.99/11.95
    3.8019.065.019.90
    5.8018.403.399.74
    8.4016.440.199.56
    10.0012.832.949.71
    下载: 导出CSV
  • [1] IEC. CISPR 16–2–2 Specification for radio disturbance and immunity measuring apparatus and methods-Part 2–2: Methods of measurement of disturbances and immunity-Measurement of disturbance power[S]. IEC, 2010.
    [2] 中国人民解放军总装备部. GJB 151B-2013 军用设备和分系统电磁发射和敏感度要求与测量[S]. 2013.

    PLA General Equipment Department. GJB 151B-2013 Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems[S]. 2013.
    [3] IEC. IEC/TS 61000-1-2 Electromagnetic compatibility (EMC)-Part 1–2: General- Methodology for the achievement of functional safety of electrical and electronic systems including equipment with regard to electromagnetic phenomena[S]. IEC, 2016.
    [4] ARMSTRONG K. How to manage risks with regard to electromagnetic disturbances[C]. 2016 IEEE International Symposium on Electromagnetic Compatibility, Ottawa, Canada, 2016. doi: 10.1109/ISEMC.2016.7571610.
    [5] ARMSTRONG K, PISSOORT D, DEGRAEVE A, et al. Risk management of electromagnetic disturbances[C]. 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility, Suntec City, Singapore, 2018: 193–198. doi: 10.1109/ISEMC.2018.8393765.
    [6] RADASKY W A and ARMSTRONG K. Non-standardized immunity test techniques to help manage risks caused by EM disturbances[C]. 2016 IEEE International Symposium on Electromagnetic Compatibility, Ottawa, Canada, 2016: 84–89. doi: 10.1109/ISEMC.2016.7571614.
    [7] 王雅平, 魏光辉, 潘晓东, 等. 通信电台带外双频干扰预测模型与试验[J]. 电子学报, 2019, 47(4): 826–831. doi: 10.3969/j.issn.0372-2112.2019.04.009

    WANG Yaping, WEI Guanghui, PAN Xiaodong, et al. Out-of-band dual frequency jamming prediction model and experiment for communication stations[J]. Acta Electronica Sinica, 2019, 47(4): 826–831. doi: 10.3969/j.issn.0372-2112.2019.04.009
    [8] 李伟, 魏光辉, 潘晓东, 等. 复杂电磁环境下通信装备干扰预测方法[J]. 电子与信息学报, 2017, 39(11): 2782–2789. doi: 10.11999/JEIT170107

    LI Wei, WEI Guanghui, PAN Xiaodong, et al. Interference prediction method of communication equipment under complex electromagnetic environment[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2782–2789. doi: 10.11999/JEIT170107
    [9] 王雅平, 魏光辉, 李伟, 等. 接收机带内双频阻塞干扰机理建模与验证[J]. 北京理工大学学报, 2018, 38(7): 709–814. doi: 10.15918/j.tbit1001-0645.2018.07.008

    WANG Yaping, WEI Guanghui, LI Wei, et al. Mechanism modeling and verification of receiver with in-band dual-frequency blocking jamming[J]. Transactions of Beijing Institute of Technology, 2018, 38(7): 709–814. doi: 10.15918/j.tbit1001-0645.2018.07.008
    [10] LI Wei, WEI Guanghui, PAN Xiaodong, et al. Electromagnetic compatibility prediction method under the multifrequency in-band interference environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(2): 520–528. doi: 10.1109/TEMC.2017.2720961
    [11] ZHAO Kai, WEI Guanghui, WANG Yaping, et al. Prediction model of in-band blocking interference under the electromagnetic radiation of dual-frequency continuous wave[J]. International Journal of Antennas and Propagation, 2020, 2020: 7651389. doi: 10.1155/2020/7651389
    [12] DOMINO W, VAKILIAN N, and AGAHI D. Polynomial model of blocker effects on LNA/mixer devices[J]. Applied Microwave & Wireless, 2001, 13(6): 30–44.
    [13] 赵凯, 魏光辉, 潘晓东, 等. 单频电磁辐射对雷达的干扰规律[J]. 系统工程与电子技术, 2021, 43(2): 363–368. doi: 10.12305/j.issn.1001-506X.2021.02.10

    ZHAO Kai, WEI Guanghui, PAN Xiaodong, et al. Interference laws of single frequency electromagnetic radiation to radar[J]. Systems Engineering and Electronics, 2021, 43(2): 363–368. doi: 10.12305/j.issn.1001-506X.2021.02.10
    [14] 魏光辉, 潘晓东, 万浩江. 装备电磁辐射效应规律与作用机理[M]. 北京: 国防工业出版社, 2018: 87–106.

    WEI Guanghui, PAN Xiaodong, and WAN Haojiang. Feature and Mechanism of Electromagnetic Radiation Effects for Equipment[M]. Beijing: Nation Defense Industry Press, 2018: 87–106.
    [15] AL-KANAN H, YANG Xianzhen, and LI Fu. Improved estimation for Saleh model and predistortion of power amplifiers using 1-dB compression point[J]. The Journal of Engineering, 2020, 2020(1): 13–18. doi: 10.1049/joe.2019.0973
    [16] 魏光辉, 王雅平, 潘晓东, 等. 带外电磁辐射三阶互调阻塞干扰预测方法及终端设备[P]. 中国专利, 108833039, 2020.

    WEI Guanghui, WANG Yaping, PAN Xiaodong, et al. Out-of-band electromagnetic radiation third-order intermodulation barrage jamming prediction method and terminal equipment[P]. China Patent, 108833039, 2020.
    [17] 魏光辉, 赵凯, 任仕召. 通信电台电磁辐射2阶互调低频阻塞效应与作用机理[J]. 电子与信息学报, 2020, 42(8): 2059–2064. doi: 10.11999/JEIT190574

    WEI Guanghui, ZHAO Kai, and REN Shizhao. Second-order intermodulation low frequency blocking effect and mechanism for communication radio under electromagnetic radiation[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2059–2064. doi: 10.11999/JEIT190574
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  920
  • HTML全文浏览量:  283
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 修回日期:  2021-04-14
  • 网络出版日期:  2021-04-27
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回