高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀噪声条件下的互质阵列欠定DOA估计方法

孙兵 阮怀林 吴晨曦 钟华 吴世龙

孙兵, 阮怀林, 吴晨曦, 钟华, 吴世龙. 非均匀噪声条件下的互质阵列欠定DOA估计方法[J]. 电子与信息学报, 2021, 43(12): 3687-3694. doi: 10.11999/JEIT210027
引用本文: 孙兵, 阮怀林, 吴晨曦, 钟华, 吴世龙. 非均匀噪声条件下的互质阵列欠定DOA估计方法[J]. 电子与信息学报, 2021, 43(12): 3687-3694. doi: 10.11999/JEIT210027
Bing SUN, Huailin RUAN, Chenxi WU, Hua ZHONG, Shilong WU. Underdetermined Direction of Arrival Estimation for Coprime Array in the Presence of Nonuniform Noise[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3687-3694. doi: 10.11999/JEIT210027
Citation: Bing SUN, Huailin RUAN, Chenxi WU, Hua ZHONG, Shilong WU. Underdetermined Direction of Arrival Estimation for Coprime Array in the Presence of Nonuniform Noise[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3687-3694. doi: 10.11999/JEIT210027

非均匀噪声条件下的互质阵列欠定DOA估计方法

doi: 10.11999/JEIT210027
基金项目: 国家自然科学基金(61171170),安徽省自然科学基金(1908085QF280)
详细信息
    作者简介:

    孙兵:男,1991年生,博士生,研究方向为空间信息处理、雷达及雷达对抗理论与技术

    阮怀林:男,1964年生,教授,博士生导师,研究方向为空间信息处理、雷达及雷达对抗理论与技术、压缩感知理论

    吴晨曦:男,1988年生,博士,讲师,研究方向为阵列信号处理、稀疏重构技术

    钟华:男,1991年生,博士生,研究方向为空间信息处理、定位理论与技术

    吴世龙:男,1978年生,副教授,主要研究方向为空间信息处理、定位理论与技术

    通讯作者:

    孙兵 sunbing137210@126.com

  • 中图分类号: TN911.23

Underdetermined Direction of Arrival Estimation for Coprime Array in the Presence of Nonuniform Noise

Funds: The National Natural Science Foundation of China (61171170), The Anhui Province Natural Science Foundation (1908085QF280)
  • 摘要: 针对基于互质阵列的欠定DOA估计方法在非均匀噪声条件下性能下降的问题,该文提出一种基于协方差矩阵重构和矩阵填充的鲁棒DOA估计方法。首先,将接收数据协方差矩阵分解,得到包含非均匀噪声项的对角阵;然后,选取对角线元素中的最小值,替换其余对角线元素,进而得到重构后的数据协方差矩阵;最后,对重构后的协方差矩阵进行扩展和矩阵填充,结合子空间方法进行DOA估计。理论分析和仿真结果表明,相对于现有方法,该文方法有效地抑制了非均匀噪声的影响,有更好的DOA估计性能。
  • 图  1  互质阵列示意图

    图  2  幅相误差条件下的归一化空间谱

    图  3  均方根误差随信噪比变化

    图  4  均方根误差随快拍数变化

    图  5  分辨概率随信噪比变化

    图  6  分辨概率随角度间隔变化

  • [1] VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    [2] QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838
    [3] WANG Xiaomeng and WANG Xin. Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2693–2706. doi: 10.1109/TSP.2019.2899292
    [4] SUN Bing, WU Chenxi, and RUAN Huailin. Array diagnosis and DOA estimation for coprime array under sensor failures[J]. Sensors, 2020, 20(9): 2735. doi: 10.3390/s20092735
    [5] RAZA A, LIU Wei, and SHEN Qing. Thinned coprime array for second-order difference co-array generation with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(8): 2052–2065. doi: 10.1109/TSP.2019.2901380
    [6] PAL P and VAIDYANATHAN P P. Coprime sampling and the music algorithm[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting, Sedona, USA, 2011: 289–294. doi: 10.1109/DSP-SPE.2011.5739227.
    [7] ZHANG Y D, AMIN M G, and HIMED B. Sparsity-based DOA estimation using co-prime arrays[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 3967–3971. doi: 10.1109/ICASSP.2013.6638403.
    [8] ZHOU Chengwei, GU Yujie, FAN Xing, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 5956–5971. doi: 10.1109/TSP.2018.2872012
    [9] MATVEYEV A L, GERSHMAN A B, and BÖHME J F. On the direction estimation Cramér-Rao bounds in the presence of uncorrelated unknown noise[J]. Circuits, Systems and Signal Processing, 1999, 18(5): 479–487. doi: 10.1007/BF01387467
    [10] GERSHMAN A B, MATVEYEV A L, and BOHME J F. Maximum likelihood estimation of signal power in sensor array in the presence of unknown noise field[J]. IEE Proceedings - Radar, Sonar and Navigation, 1995, 142(5): 218–224. doi: 10.1049/ip-rsn:19952141
    [11] PESAVENTO M and GERSHMAN A B. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1310–1324. doi: 10.1109/78.928686
    [12] WU Y, HOU C, LIAO G, et al. Direction-of-arrival estimation in the presence of unknown nonuniform noise fields[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2): 504–510. doi: 10.1109/JOE.2006.875270
    [13] CHEN C E, LORENZELLI F, HUDSON R E, et al. Stochastic maximum-likelihood DOA estimation in the presence of unknown nonuniform noise[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 3038–3044. doi: 10.1109/TSP.2008.917364
    [14] LIAO Bin, CHAN S C, HUANG Lei, et al. Iterative methods for subspace and DOA estimation in nonuniform noise[J]. IEEE Transactions on Signal Processing, 2016, 64(12): 3008–3020. doi: 10.1109/TSP.2016.2537265
    [15] ESFANDIARI M, VOROBYOV S A, ALIBANI S, et al. Non-iterative subspace-based DOA estimation in the presence of nonuniform noise[J]. IEEE Signal Processing Letters, 2019, 26(6): 848–852. doi: 10.1109/LSP.2019.2909587
    [16] HE Zhenqing, SHI Zhiping, and HUANG Lei. Covariance sparsity-aware DOA estimation for nonuniform noise[J]. Digital Signal Processing, 2014, 28: 75–81. doi: 10.1016/j.dsp.2014.02.013
    [17] HE Zhenqing, SHI Zhiping, HUANG Lei, et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4): 435–439. doi: 10.1109/LSP.2014.2358084
    [18] TIAN Ye, SHI Hongyin, and XU He. DOA estimation in the presence of unknown non-uniform noise with coprime array[J]. Electronics Letters, 2017, 53(2): 113–115. doi: 10.1049/el.2016.3944
    [19] 吴晨曦, 张旻, 王可人. 非均匀噪声背景下的欠定DOA估计方法[J]. 系统工程与电子技术, 2018, 40(3): 498–503. doi: 10.3969/j.issn.1001-506X.2018.03.02

    WU Chenxi, ZHANG Min, and WANG Keren. Underdetermined direction of arrival estimation with nonuniform noise[J]. Systems Engineering and Electronics, 2018, 40(3): 498–503. doi: 10.3969/j.issn.1001-506X.2018.03.02
    [20] LIU Ke and ZHANG Y D. Coprime array-based DOA estimation in unknown nonuniform noise environment[J]. Digital Signal Processing, 2018, 79: 66–74. doi: 10.1016/j.dsp.2018.04.003
    [21] 孙兵, 阮怀林, 吴晨曦, 等. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法[J]. 电子与信息学报, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041

    SUN Bing, RUAN Huailin, WU Chenxi, et al. Direction of arrival estimation with coprime array based on toeplitz covariance matrix reconstruction[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041
    [22] CANDÈS E J and RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717–772. doi: 10.1007/s10208-009-9045-5
    [23] CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970
  • 加载中
图(6)
计量
  • 文章访问数:  1149
  • HTML全文浏览量:  503
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-03-30
  • 网络出版日期:  2021-04-02
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回