高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间异步全双工数字域分段卷积自干扰抑制技术

李彤 沈莹 潘文生 邵士海 唐友喜

李彤, 沈莹, 潘文生, 邵士海, 唐友喜. 时间异步全双工数字域分段卷积自干扰抑制技术[J]. 电子与信息学报, 2022, 44(4): 1395-1401. doi: 10.11999/JEIT210024
引用本文: 李彤, 沈莹, 潘文生, 邵士海, 唐友喜. 时间异步全双工数字域分段卷积自干扰抑制技术[J]. 电子与信息学报, 2022, 44(4): 1395-1401. doi: 10.11999/JEIT210024
LI Tong, SHEN Ying, PAN Wensheng, SHAO Shihai, TANG Youxi. A Timing Asynchronous Full Duplex Digital Self-interference Suppression Method by Segment Convolution[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1395-1401. doi: 10.11999/JEIT210024
Citation: LI Tong, SHEN Ying, PAN Wensheng, SHAO Shihai, TANG Youxi. A Timing Asynchronous Full Duplex Digital Self-interference Suppression Method by Segment Convolution[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1395-1401. doi: 10.11999/JEIT210024

时间异步全双工数字域分段卷积自干扰抑制技术

doi: 10.11999/JEIT210024
基金项目: 国家自然科学基金(U19B2014, 61771107, 62071094, 61701075, 61601064, 61531009);国家重点研发计划(2018YFB1801903);四川省科技项目(2020YFH0101)
详细信息
    作者简介:

    李彤:女,1996年生,博士生,研究方向为无线通信信号处理、通信抗干扰技术等

    沈莹:男,1980年生,副教授,研究方向为无线通信信号处理、通信抗干扰技术等

    潘文生:男,1975年生,副研究员,研究方向为射频线性化技术、全双工通信技术

    邵士海:男,1980年生,教授,博士生导师,研究方向为无线通信信号处理、抗干扰与安全通信等

    唐友喜:男,1964年生,教授,博士生导师,研究方向为无线通信中的数字信号处理

    通讯作者:

    邵士海 ssh@uestc.edu.cn

  • 中图分类号: TN911.7

A Timing Asynchronous Full Duplex Digital Self-interference Suppression Method by Segment Convolution

Funds: The National Natural Science Foundation of China (U19B2014, 61771107, 62071094, 61701075, 61601064, 61531009), The National Key R&D Program of China (2018YFB1801903), The Science and Technology Program of Sichuan Province (2020YFH0101)
  • 摘要: 同时同频全双工(CCFD)多载波信号时间异步场景下,有用信号(SoI)与自干扰信号(SI)多径最大时差超出循环前缀长度(CP),有用信号与自干扰信号子载波不正交,造成频域自干扰抑制性能严重下降。针对上述问题,该文提出一种时间异步数字域分段卷积的自干扰抑制方法,建立了自干扰分段、频域重建、叠加抵消的自干扰抑制过程,提升了时间异步场景下自干扰抑制性能。理论和仿真结果表明,在异步场景下,采用分段卷积的自干扰抑制方法可以直接在频域重建自干扰,达到与同步场景相当的干扰抑制性能。
  • 图  1  有用信号与自干扰信号同步状态示意图

    图  2  有用信号与自干扰信号异步状态示意图

    图  3  分段重叠相加法示意图

    图  4  自干扰信号与有用信号帧结构示意图

    图  5  干扰功率为30 dBm时,残余干扰功率与干噪比的关系

    图  6  干噪比为50 dB时,残余干扰功率与相对时延的关系

    图  7  误码率与信噪比的关系

    表  1  数值与仿真分析的参数设置

    参数数值
    OFDM符号数据位长度${N_b}$1024
    OFDM符号长度$N$1096
    分段重建FFT点数$K$1024
    每个OFDM符号划分段数$M$2
    调制方式64 QAM
    有用信号多径信道TDL_A_30 ns[18]
    自干扰信号多径信道TDL_A_10 ns[18]
    下载: 导出CSV
  • [1] CRUICKSHANK D B. Implementing Full Duplexing for 5G[M]. Norwood: Artech House, 2020: 1–21.
    [2] MOHAMMADI M, CHALISE B K, SURAWEERA H A, et al. Design and analysis of full-duplex massive antenna array systems based on wireless power transfer[J]. IEEE Transactions on Communications, 2021, 69(2): 1302–1316. doi: 10.1109/TCOMM.2020.3035401
    [3] YILAN M, AYAR H, NAWAZ H, et al. Monostatic antenna in-band full duplex radio: Performance limits and characterization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4786–4799. doi: 10.1109/TVT.2019.2904138
    [4] LI Jiamin, LV Qian, ZHU Pengcheng, et al. Network-assisted full-duplex distributed massive MIMO systems with beamforming training based CSI estimation[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2190–2204. doi: 10.1109/TWC.2020.3040044
    [5] 吴飞, 邵士海, 唐友喜. 基于容量和发射机预调零的全双工天线位置优化研究[J]. 电子与信息学报, 2016, 38(9): 2215–2220. doi: 10.11999/JEIT151385

    WU Fei, SHAO Shihai, and TANG Youxi. Location optimization of antenna based on the capacity and transmit interference pre-nulling in full-duplex[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2215–2220. doi: 10.11999/JEIT151385
    [6] QUAN Xin, LIU Ying, FAN Pingzhi, et al. Full-duplex transceiver design in the presence of phase noise and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 558–571. doi: 10.1109/TVT.2020.3047076
    [7] LU Hongtao, SHAO Shihai, DENG Kai, et al. Self-mixed self-interference analog cancellation in full-duplex communications[J]. Science China Information Sciences, 2016, 59(4): 042303. doi: 10.1007/s11432-015-5365-z
    [8] DEBAILLIE B, VAN DEN BROEK D J, LAVÍN C, et al. Analog/RF solutions enabling compact full-duplex radios[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1662–1673. doi: 10.1109/JSAC.2014.2330171
    [9] 黎斯, 鲁宏涛, 邵士海, 等. 全双工通信射频域自干扰抑制量对数字域自干扰抑制能力的影响[J]. 电子与信息学报, 2017, 39(6): 1278–1283. doi: 10.11999/JEIT160967

    LI Si, LU Hongtao, SHAO Shihai, et al. Impact of the amount of RF self-interference cancellation on digital self-interference cancellation in full duplex communications[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1278–1283. doi: 10.11999/JEIT160967
    [10] JIANG Yufei, DUAN Hanjun, ZHU Xu, et al. Toward URLLC: A full duplex relay system with self-interference utilization or cancellation[J]. IEEE Wireless Communications, 2021, 28(1): 74–81. doi: 10.1109/MWC.001.2000238
    [11] HE Yimin, ZHAO Hongzhi, GUO Wenbo, et al. A time-robust digital self-interference cancellation in full-duplex radios: Receiver design and performance analysis[J]. IEEE Access, 2020, 8: 185021–185031. doi: 10.1109/ACCESS.2020.3029567
    [12] EVERETT E, SAHAI A, and SABHARWAL A. Passive self-interference suppression for full-duplex infrastructure nodes[J]. IEEE Transactions on Wireless Communications, 2014, 13(2): 680–694. doi: 10.1109/TWC.2013.010214.130226
    [13] AHMED E and ELTAWIL A M. All-digital self-interference cancellation technique for full-duplex systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3519–3532. doi: 10.1109/TWC.2015.2407876
    [14] AHMED E, ELTAWIL A M, and SABHARWAL A. Self-interference cancellation with nonlinear distortion suppression for full-duplex systems[C]. 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2013: 1199-1203. doi: 10.1109/ACSSC.2013.6810483.
    [15] SHABOYAN S, BEHBAHANI A S, and ELTAWIL A M. Active cancellation of self-interference for full-duplex amplify and forward Wi-Fi relay[J]. IEEE Wireless Communications Letters, 2018, 7(6): 1050–1053. doi: 10.1109/LWC.2018.2857801
    [16] SHABOYAN S, AHMED E, BEHBAHANI A S, et al. Frequency and timing synchronization for in-band full-duplex OFDM system[C]. GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017: 1-7. doi: 10.1109/GLOCOM.2017.8254928.
    [17] 许国平, 何维, 张欣, 等. 重叠剪切法频域均衡固有误差分析及其改进方法[J]. 电子与信息学报, 2008, 30(9): 2178–2181. doi: 10.3724/SP.J.1146.2007.00304

    XU Guoping, HE Wei, ZHANG Xin, et al. Analysis of inherent error of overlap-cut method frequency domain equalization and relating improvements[J]. Journal of Electronics &Information Technology, 2008, 30(9): 2178–2181. doi: 10.3724/SP.J.1146.2007.00304
    [18] ETSI. ETSI TR 138 901-2018 5G Study on channel model for frequencies from 0.5 to 100 GHz (3GPP TR 38.901 version 14.3. 0 Release 14)[S]. 2018.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  950
  • HTML全文浏览量:  383
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-06-09
  • 网络出版日期:  2021-08-24
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回