高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于填充曲线和相邻像素比特置乱的图像加密方法

牛莹 张勋才

牛莹, 张勋才. 基于填充曲线和相邻像素比特置乱的图像加密方法[J]. 电子与信息学报, 2022, 44(3): 1137-1146. doi: 10.11999/JEIT210023
引用本文: 牛莹, 张勋才. 基于填充曲线和相邻像素比特置乱的图像加密方法[J]. 电子与信息学报, 2022, 44(3): 1137-1146. doi: 10.11999/JEIT210023
NIU Ying, ZHANG Xuncai. An Image Encryption Algorithm Based on Filling Curve and Adjacent Pixel Bit Scrambling[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1137-1146. doi: 10.11999/JEIT210023
Citation: NIU Ying, ZHANG Xuncai. An Image Encryption Algorithm Based on Filling Curve and Adjacent Pixel Bit Scrambling[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1137-1146. doi: 10.11999/JEIT210023

基于填充曲线和相邻像素比特置乱的图像加密方法

doi: 10.11999/JEIT210023
基金项目: 国家自然科学基金(62102374, 62072417),河南省重点研发与推广专项(212102210028, 202102210177)
详细信息
    作者简介:

    牛莹:女,1982年生,副教授,研究方向为生物信息处理与信息安全

    张勋才:男,1981年生,教授、研究方向为智能信息处理与优化控制

    通讯作者:

    张勋才 zhangxuncai@pku.edu.cn

  • 中图分类号: TN918.4; TP301

An Image Encryption Algorithm Based on Filling Curve and Adjacent Pixel Bit Scrambling

Funds: The National Natural Science Foundation of China (62102374, 62072417), The Key Research and Development Program of Henan Province (212102210028, 202102210177)
  • 摘要: 为提高图像传输安全性,该文提出一种基于填充曲线和相邻像素比特置乱的加密算法。首先,设计一种新的填充曲线用于图像像素的全局置乱。其次,将混沌序列作为约瑟夫遍历的起点和步长,利用改进的约瑟夫遍历方法对相邻像素进行比特级置乱。像素级和比特级的双重置换,打破了图像像素间的高度相关性。最后,通过双向密文反馈,进一步提高方法的安全性。此外,设计了一种与明文图像关联的自适应密钥生成方法,以克服选择/已知明文攻击。并从密钥空间、密钥灵敏度、信息熵和相关性等性能指标对该方案进行了分析,结果表明,该算法具有良好的性能和足够的安全性。
  • 图  1  常见的填充曲线

    图  2  加密方案的总体框图

    图  3  V型填充曲线的置乱示意图

    图  4  采用约瑟夫置乱的实例

    图  5  仿真结果

    图  6  解密密钥敏感性测试结果

    图  7  直方图

    图  8  相关性分析

    图  9  数据丢失攻击分析

    图  10  遭受噪声攻击的密文图像和对应的解密图像

    表  1  不同图像的密文图像的χ2分布统计

    LenaBaboonBoatElainePepper
    明文39851790571008533628231629
    密文229.73259.85241.48274.92275.15
    下载: 导出CSV

    表  2  明文图像和密文图像各方向的相关系数

    图像明文密文
    水平垂直对角水平垂直对角
    Lena0.96540.93090.90520.001299–0.002880–0.007894
    Baboon0.83020.87770.78830.003136–0.0012460.008514
    Boat0.94570.92770.88950.001249–0.000359–0.001481
    Elaine0.97690.97170.9506–0.0091560.0014120.004994
    Pepper0.96950.96520.9376–0.002798–0.009152–0.000651
    下载: 导出CSV

    表  3  不同图像的信息熵和局部信息熵

    明文密文局部信息熵
    Lena7.45327.99757.9004
    Baboon7.00927.99717.9026
    Boat7.15727.99747.9040
    Elaine7.48747.99707.9030
    Pepper7.57977.99737.9029
    下载: 导出CSV

    表  4  明文图像发生微小改变时,对应密文图像间的NPCR和UACI的值(%)

    LenaBaboonBoatElainePepper
    NPCR99.675099.626299.578999.609499.6063
    UACI33.457733.214733.264233.575233.3906
    下载: 导出CSV

    表  5  对于大小为256×256的Lena,本方案与其他方法的对比结果

    方法信息熵NPCR (%)UACI (%)相关系数
    水平垂直对角
    本文方法7.997599.675033.45770.0013–0.0029–0.0079
    文献[8]7.997099.610033.46000.00220.00130.0008
    文献[10]7.997499.611433.4636–0.0223–0.0084–0.0086
    文献[11]7.9969–0.00040.0051–0.0004
    文献[12]7.997699.410033.57000.0030–0.0024–0.0034
    文献[13]7.997299.620033.4000–0.0015–0.00320.0008
    文献[17]7.997199.598633.4561–0.0029–0.00170.0004
    文献[20]7.996799.610033.46000.0068–0.00540.0010
    下载: 导出CSV

    表  6  对于大小为256×256的Peppers,本文方案与其他方法的对比结果

    方法信息熵NPCR (%)UACI (%)相关系数
    水平垂直对角
    本文方法7.997399.601733.53540.00270.00320.0002
    文献[8]7.997399.620033.48000.0001–0.0026–0.0023
    文献[10]7.997399.609233.47110.02520.0248–0.0072
    文献[12]7.997499.420033.27000.00610.00060.0025
    文献[17]7.996899.596033.44390.00210.00840.0007
    下载: 导出CSV
  • [1] KAUR M and KUMAR V. A comprehensive review on image encryption techniques[J]. Archives of Computational Methods in Engineering, 2020, 27(1): 15–43. doi: 10.1007/s11831-018-9298-8
    [2] 李付鹏, 刘敬彪, 王光义, 等. 基于混沌集的图像加密算法[J]. 电子与信息学报, 2020, 42(4): 981–987. doi: 10.11999/JEIT190344

    LI Fupeng, LIU Jingbiao, WANG Guangyi, et al. An image encryption algorithm based on chaos set[J]. Journal of Electronics &Information Technology, 2020, 42(4): 981–987. doi: 10.11999/JEIT190344
    [3] FRIDRICH J. Symmetric ciphers based on two-dimensional chaotic maps[J]. International Journal of Bifurcation and Chaos, 1998, 8(6): 1259–1284. doi: 10.1142/S021812749800098X
    [4] LI Chunhu, LUO Guangchun, QIN Ke, et al. An image encryption scheme based on chaotic tent map[J]. Nonlinear Dynamics, 2017, 87(1): 127–133. doi: 10.1007/s11071-016-3030-8
    [5] SOLAK E, ÇOKAL C, YILDIZ O T, et al. Cryptanalysis of fridrich's chaotic image encryption[J]. International Journal of Bifurcation and Chaos, 2010, 20(5): 1405–1413. doi: 10.1142/S0218127410026563
    [6] RHOUMA R, SOLAK E, and BELGHITH S. Cryptanalysis of a new substitution-diffusion based image cipher[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(7): 1887–1892. doi: 10.1016/j.cnsns.2009.07.007
    [7] HUA Zhongyun and ZHOU Yicong. Image encryption using 2D logistic-adjusted-sine map[J]. Information Sciences, 2016, 339: 237–253. doi: 10.1016/j.ins.2016.01.017
    [8] CHEN Chen, SUN Kehui, and HE Shaobo. An improved image encryption algorithm with finite computing precision[J]. Signal Processing, 2020, 168: 107340. doi: 10.1016/j.sigpro.2019.107340
    [9] FLORES-VERGARA A, INZUNZA-GONZALEZ E, GARCIA-GUERRERO E E, et al. Implementing a chaotic cryptosystem by performing parallel computing on embedded systems with multiprocessors[J]. Entropy, 2019, 21(3): 268. doi: 10.3390/e21030268
    [10] ZHANG Yong. The fast image encryption algorithm based on lifting scheme and chaos[J]. Information Sciences, 2020, 520: 177–194. doi: 10.1016/j.ins.2020.02.012
    [11] 廖春成, 周小平, 廖春龙, 等. 像素位置与比特双重置乱的混沌图像加密算法[J]. 中国科技论文, 2014, 9(1): 112–116. doi: 10.3969/j.issn.2095-2783.2014.01.022

    LIAO Chuncheng, ZHOU Xiaoping, LIAO Chunlong, et al. Chaotic image encryption algorithm based on dual scrambling of pixel position and bit[J]. China Sciencepaper, 2014, 9(1): 112–116. doi: 10.3969/j.issn.2095-2783.2014.01.022
    [12] LIU Wenhao, SUN Kehui, and ZHU Congxu. A fast image encryption algorithm based on chaotic map[J]. Optics and Lasers in Engineering, 2016, 84: 26–36. doi: 10.1016/j.optlaseng.2016.03.019
    [13] LI Yueping, WANG Chunhua, and CHEN Hua. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation[J]. Optics and Lasers in Engineering, 2017, 90: 238–246. doi: 10.1016/j.optlaseng.2016.10.020
    [14] SHAHNA K U and MOHAMED A. A novel image encryption scheme using both pixel level and bit level permutation with chaotic map[J]. Applied Soft Computing, 2020, 90: 106162. doi: 10.1016/j.asoc.2020.106162
    [15] KANDAR S, CHAUDHURI D, BHATTACHARJEE A, et al. Image encryption using sequence generated by cyclic group[J]. Journal of Information Security and Applications, 2019, 44: 117–129. doi: 10.1016/j.jisa.2018.12.003
    [16] MOZAFFARI S. Parallel image encryption with bitplane decomposition and genetic algorithm[J]. Multimedia Tools and Applications, 2018, 77(19): 25799–25819. doi: 10.1007/s11042-018-5817-8
    [17] WANG Xingyuan, ZHU Xiaoqiang, and ZHANG Yingqian. An image encryption algorithm based on Josephus traversing and mixed chaotic map[J]. IEEE Access, 2018, 6: 23733–23746. doi: 10.1109/ACCESS.2018.2805847
    [18] YANG Gelan, JIN Huixia, and Bai Na. Image encryption using the chaotic Josephus matrix[J]. Mathematical Problems in Engineering, 2014, 2014: 632060. doi: 10.1155/2014/632060
    [19] CHAI Xiuli, GAN Zhihua, YANG Kang, et al. An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations[J]. Signal Processing:Image Communication, 2017, 52: 6–19. doi: 10.1016/j.image.2016.12.007
    [20] SUN Shuliang. A novel hyperchaotic image encryption scheme based on DNA encoding, pixel-level scrambling and bit-level scrambling[J]. IEEE Photonics Journal, 2018, 10(2): 7201714. doi: 10.1109/JPHOT.2018.2817550
    [21] QI Guoyuan, VAN WYK M A, VAN WYK B J, et al. A new hyperchaotic system and its circuit implementation[J]. Chaos, Solitons & Fractals, 2009, 40(5): 2544–2549. doi: 10.1016/j.chaos.2007.10.053
    [22] AQEEL-UR-REHMAN, LIAO Xiaofeng, KULSOOM A, et al. A modified (Dual) fusion technique for image encryption using SHA-256 hash and multiple chaotic maps[J]. Multimedia Tools and Applications, 2016, 75(18): 11241–11266. doi: 10.1007/s11042-015-2851-7
    [23] 林土胜, 徐亚国. 信息加密的混沌流密码受参数变化影响的实验研究[J]. 中山大学学报:自然科学版, 2004, 43(S2): 101–104. doi: 10.3321/j.issn:0529-6579.2004.z2.026

    LIN Tusheng and XU Yaguo. Experimental study of different parameters on chaotic stream ciphers for information encryption[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(S2): 101–104. doi: 10.3321/j.issn:0529-6579.2004.z2.026
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  992
  • HTML全文浏览量:  596
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-10-06
  • 网络出版日期:  2021-10-27
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回