高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FPGA的水平集图像分割算法加速器

刘野 肖剑彪 吴飞 常亮 周军

刘野, 肖剑彪, 吴飞, 常亮, 周军. 基于FPGA的水平集图像分割算法加速器[J]. 电子与信息学报, 2021, 43(6): 1525-1532. doi: 10.11999/JEIT210012
引用本文: 刘野, 肖剑彪, 吴飞, 常亮, 周军. 基于FPGA的水平集图像分割算法加速器[J]. 电子与信息学报, 2021, 43(6): 1525-1532. doi: 10.11999/JEIT210012
Ye LIU, Jianbiao XIAO, Fei WU, Liang CHANG, Jun ZHOU. A Fast and Efficient FPGA-based Level Set Hardware Accelerator for Image Segmentation[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1525-1532. doi: 10.11999/JEIT210012
Citation: Ye LIU, Jianbiao XIAO, Fei WU, Liang CHANG, Jun ZHOU. A Fast and Efficient FPGA-based Level Set Hardware Accelerator for Image Segmentation[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1525-1532. doi: 10.11999/JEIT210012

基于FPGA的水平集图像分割算法加速器

doi: 10.11999/JEIT210012
基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(U2030204)
详细信息
    作者简介:

    刘野:男,1991年生,博士生,研究方向为图像处理算法与芯片协同设计

    肖剑彪:男,1998年生,硕士生,研究方向为智能感知专用处理芯片设计

    吴飞:男,1997年生,硕士生,研究方向为神经网络硬件加速器设计

    常亮:男,1989年生,副研究员,研究方向为存算一体化人工智能芯片设计

    周军:男,1982年生,教授,研究方向为智能感知算法与芯片协同设计

    通讯作者:

    周军 zhouj@uestc.edu.cn

  • 中图分类号: TN47

A Fast and Efficient FPGA-based Level Set Hardware Accelerator for Image Segmentation

Funds: NSAF (U2030204)
  • 摘要: 水平集算法因其出色的性能,在图像分割领域中得到了广泛的应用。同时,与基于深度学习的图像分割算法相比,水平集算法不需要训练数据,大幅降低了数据标记带来的工作量。然而,目前水平集算法主要是基于软件开发,涉及大量复杂的计算,以及计算的多次迭代,导致较高的处理延时与功耗。为了加快水平集算法的处理速度和降低功耗,该文提出了一种基于FPGA的水平集图像分割算法加速器,其中包含4个设计创新点:任务级并行处理、图像分块像素级并行处理、全流水线处理架构、分时复用的梯度和散度算子处理。实验结果表明,与在CPU上执行的水平集算法相比,该文提出的硬件加速器处理速度提升10.7倍,功耗仅为2.2 W。
  • 图  1  水平集算法处理流程

    图  2  基于FPGA的水平集图像分割算法硬件架构

    图  3  任务级并行处理架构

    图  4  图像分块处理架构

    图  5  本文所提全流水线处理架构

    图  6  分时复用控制器以及时序图

    图  7  实验平台建立和实时演示平台

    图  8  软件和FPGA实现的分割结果对比

    图  9  分割时间对比

    图  10  硬件加速器分割结果轮廓及参考轮廓

    图  11  水平集硬件加速器功耗占比

    表  1  资源利用率

    FPGA型号 时钟频率 (MHz) Regs LUT DSP
    Virtex7 100 40655(6.69%) 30680(10.10%) 307(10.96%)
    下载: 导出CSV
  • [1] NIRKIN Y, MASI I, TRAN TUAN A, et al. On face segmentation, face swapping, and face perception[C]. Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi'an, China, 2018: 98–105. doi: 10.1109/FG.2018.00024.
    [2] WANG Guotai, LI Wenqi, ZULUAGA M A, et al. Interactive medical image segmentation using deep learning with image-specific fine tuning[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1562–1573. doi: 10.1109/TMI.2018.2791721
    [3] MISHRA S, LIANG Peixian, CZAJKA A, et al. CC-NET: Image complexity guided network compression for biomedical image segmentation[C]. Proceedings of the IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 2019: 57–60. doi: 10.1109/ISBI.2019.8759448.
    [4] HU Haigen, ZHENG Yixing, ZHOU Qianwei, et al. MC-Unet: Multi-scale convolution unet for bladder cancer cell segmentation in phase-contrast microscopy images[C]. Proceedings of 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, USA, 2019: 1197–1199. doi: 10.1109/BIBM47256.2019.8983121.
    [5] OSHER S and SETHIAN J A. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations[J]. Journal of Computational Physics, 1998, 79(1): 12–49. doi: 10.1016/0021-9991(88)90002-2
    [6] KASS M, WITKIN A, and TERZOPOULOS D. Snakes: Active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321–331. doi: 10.1007/BF00133570
    [7] XU Chenyang and PRINCE J L. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing, 1998, 7(3): 359–369. doi: 10.1109/83.661186
    [8] CASELLES V, CATTÉ F, COLL T, et al. A geometric model for active contours in image processing[J]. Numerische Mathematik, 1993, 66(1): 1–31. doi: 10.1007/BF01385685
    [9] CASELLES V, KIMMEL R, and SAPIRO G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1): 61–79. doi: 10.1023/A:1007979827043
    [10] MALLADI R, SETHIAN J A, and VEMURI B C. Shape modeling with front propagation: A level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158–175. doi: 10.1109/34.368173
    [11] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [12] LIU Ye, WANG Yin, CHANG Liang, et al. A fast and efficient FPGA-based level set hardware accelerator for image segmentation[C]. Proceedings of 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Nanjing, China, 2020: 83–84. doi: 10.1109/ICTA50426.2020.9331957.
    [13] CHAN T F and VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266–277. doi: 10.1109/83.902291
    [14] LI Chunming, HUANG Rui, DING Zhaohua, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[J]. IEEE Transactions on Image Processing, 2011, 20(7): 2007–2016. doi: 10.1109/TIP.2011.2146190
    [15] LI Chunming, XU Chenyang, GUI Changfeng, et al. Level set evolution without re-initialization: A new variational formulation[C]. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, USA, 2005: 430–436. doi: 10.1109/CVPR.2005.213.
    [16] LI Chunming, XU Chenyang, GUI Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243–3254. doi: 10.1109/TIP.2010.2069690
    [17] EVANS L C. Partial Differential Equations[M]. 2nd ed. USA: American Mathematical Society, 2010.
    [18] JALBA A C, VAN DER LAAN W J, and ROERDINK J B T M. Fast sparse level sets on graphics hardware[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(1): 30–44. doi: 10.1109/TVCG.2012.69
    [19] BALLA-ARABÉ S, GAO Xinbo, and WANG Bin. GPU accelerated edge-region based level set evolution constrained by 2d gray-scale histogram[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2688–2698. doi: 10.1109/TIP.2013.2255304
    [20] TSUYAMA H and MARUYAMA T. An FPGA acceleration of a level set segmentation method[C]. Proceedings of the 22nd International Conference on Field Programmable Logic and Applications (FPL), Oslo, Norway, 2012: 414–420. doi: 10.1109/FPL.2012.6339138.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1063
  • HTML全文浏览量:  431
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 修回日期:  2021-04-16
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回