高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合多权重因素的低秩概率矩阵分解推荐模型

王丹 田广强 王福忠

王丹, 田广强, 王福忠. 融合多权重因素的低秩概率矩阵分解推荐模型[J]. 电子与信息学报, 2022, 44(2): 552-565. doi: 10.11999/JEIT210011
引用本文: 王丹, 田广强, 王福忠. 融合多权重因素的低秩概率矩阵分解推荐模型[J]. 电子与信息学报, 2022, 44(2): 552-565. doi: 10.11999/JEIT210011
WANG Dan, TIAN Guangqiang, WANG Fuzhong. Probabilistic Matrix Factorization Recommendation Model Incorporating Multiple Weighting Factors[J]. Journal of Electronics & Information Technology, 2022, 44(2): 552-565. doi: 10.11999/JEIT210011
Citation: WANG Dan, TIAN Guangqiang, WANG Fuzhong. Probabilistic Matrix Factorization Recommendation Model Incorporating Multiple Weighting Factors[J]. Journal of Electronics & Information Technology, 2022, 44(2): 552-565. doi: 10.11999/JEIT210011

融合多权重因素的低秩概率矩阵分解推荐模型

doi: 10.11999/JEIT210011
基金项目: 国家重大专项子课题(22016YFC0600906);2019年度河南省高等学校青年骨干教师培养计划(2019286);河南省教育科学“十三五”规划(2020YB0404);焦作市工程技术中心科研项目(201834);黄河交通学院计算机科学与技术重点学科项目(201902)
详细信息
    作者简介:

    王丹:女,1985年生,硕士,副教授,研究方向为大数据与社交网络数据挖掘等

    田广强:男,1975年生,硕士,副教授,研究方向为数据挖掘、人工智能等

    王福忠:男,1961年生,博士,教授,研究方向为人工智能控制、智能信息处理与故障诊断等

    通讯作者:

    王丹 wangdliang80@sina.com

  • 中图分类号: TN911.7; TP391

Probabilistic Matrix Factorization Recommendation Model Incorporating Multiple Weighting Factors

Funds: Sub-projects of National Major Special Projects(22016YFC0600906), Training plan of young backbone teachers in Colleges and universities of Henan Province in 2019(2019286), The 13th five year plan of Educational Science in Henan Province(2020YB0404), Scientific research project of Jiaozuo Engineering Technology Center(201834), Key Subject Project of Computer Science and Technology in Huanghe Jiaotong University(201902)
  • 摘要: 针对个性化推荐精度较低、对冷启动敏感等问题,该文提出一种融合多权重因素的低秩概率矩阵分解推荐模型MWFPMF。模型利用给定的社交网络构建信任网络,借助Page rank算法和信任传递机制求取用户间信任度;基于Page rank计算用户社会地位,利用活动评分和评分时间修正用户间关系权重;引入词频-逆文本频率技术(TF-IDF)求取用户标签,通过标签相似性表征用户间同质性;将用户间信任度、用户社会地位影响力和用户同质性3因素融入低秩概率矩阵分解中,从而使用户偏好和活动特征映射到同一低秩空间,实现用户-活动评分矩阵的分解,在正则化约束下,最终完成低秩特征矩阵对用户评分缺失的有效预测。利用豆瓣同城北京和Ciao数据集确定各模块的参数设置值。通过仿真对比实验可知,本推荐模型获得了较高的推荐精度,与其他5种传统推荐算法相比,平均绝对误差至少降低了6.58%,均方差误差至少降低了6.27%,与深度学习推进算法相比,推荐精度基本接近;在冷启动用户推荐上优势明显,与其他推荐算法相比,平均绝对误差至少降低了0.89%,均方差误差至少降低了3.01%。
  • 图  1  信任网络

    图  2  具有社会地位影响力的信任网络

    图  3  矩阵分解示意图

    图  4  不同数据集上参数${\lambda _W}$${\rm{MAE}}$关系

    图  5  不同数据集上参数${\lambda _H}$${\rm{MAE}}$关系

    图  6  不同数据集上参数$\varphi $${\rm{MAE}}$关系

    图  7  不同数据集上参数$\phi $${\rm{MAE}}$关系

    图  8  不同数据集上维度$d$${\rm{MAE}}$关系

    图  9  不同数据集上维度$d$${\rm{MAE}}$关系

    图  10  不同数据集上维度$d$${\rm{RMSE}}$关系

    图  11  豆瓣北京数据集上各算法评价指标

    图  12  Ciao数据集上各算法评价指标

    表  1  参数设置

    参数参数
    用户特征正则化控制参数${\lambda _{{\boldsymbol{Ut}}} }$0.1用户同质性调节参数${\lambda _H}$0.5
    活动特征正则化控制参数${\lambda _{{\boldsymbol{St}}} }$0.1用户信任网络跳出率$\rho $0.85
    用户社会影响力调节参数${\lambda _W}$5隐特征矩阵维度$d$15
    梯度学习速率$\beta $0.01跳数阈值${h_\theta }$3
    同质相似性阈值$\alpha $0.8时间衰减参数$\delta$0.5
    下载: 导出CSV

    表  2  各算法对冷启动用户的推荐性能比较

    推荐算法豆瓣北京数据集Ciao数据集
    ${\rm{MAE}}$${\rm{RMSE}}$${\rm{MAE}}$${\rm{RMSE}}$
    MWFPMF0.84171.05260.83331.0348
    AODR0.84931.08430.84071.0695
    CA-NCF0.86541.09490.85371.0814
    CSIT0.88921.13770.89451.1229
    AutoTrustRec0.89881.14320.89641.1291
    MIMFCF0.91681.16370.91251.1339
    RSNMF0.93491.19380.93681.1954
    ISSMF1.01021.26510.99291.2695
    PMF1.02731.30811.01691.3096
    下载: 导出CSV
  • [1] CUI Zhihua, XU Xianghua, XUE Fei, et al. Personalized recommendation system based on collaborative filtering for IoT scenarios[J]. IEEE Transactions on Services Computing, 2020, 13(4): 685–695. doi: 10.1109/TSC.2020.2964552
    [2] LI Shugang, SONG Xuewei, LU Hanyu, et al. Friend recommendation for cross marketing in online brand community based on intelligent attention allocation link prediction algorithm[J]. Expert Systems with Applications, 2020, 139: 112839. doi: 10.1016/j.eswa.2019.112839
    [3] AHMADIAN S, AFSHARCHI M, and MEGHDADI M. A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems[J]. Multimedia Tools and Applications, 2019, 78(13): 17763–17798. doi: 10.1007/s11042-018-7079-x
    [4] GUO Guibing, ZHANG Jie, and YORKE-SMITH N. A novel recommendation model regularized with user trust and item ratings[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(7): 1607–1620. doi: 10.1109/TKDE.2016.2528249
    [5] WANG Ximeng, LIU Yun, ZHANG Guangquan, et al. Diffusion-based recommendation with trust relations on tripartite graphs[J]. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017(8): 083405. doi: 10.1088/1742-5468/aa8189
    [6] PAPNEJA S, SHARMA K, and KHILWANI N. Context aware personalized content recommendation using ontology based spreading activation[J]. International Journal of Information Technology, 2018, 10(2): 133–138. doi: 10.1007/s41870-017-0052-5
    [7] CHEN Lingjiao and GAO Jian. A trust-based recommendation method using network diffusion processes[J]. Physica A: Statistical Mechanics and its Applications, 2018, 506: 679–691. doi: 10.1016/j.physa.2018.04.089
    [8] GUAN Jiansheng, XU Min, and KONG Xiangsong. Learning social regularized user representation in recommender system[J]. Signal Processing, 2018, 144: 306–310. doi: 10.1016/j.sigpro.2017.09.015
    [9] AGHDAM M H. Context-aware recommender systems using hierarchical hidden Markov model[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 518: 89–98. doi: 10.1016/j.physa.2018.11.037
    [10] YAO Weilong, HE Jing, HUANG Guangyan, et al. Modeling dual role preferences for trust-aware recommendation[C]. The 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, Queensland, Australia, 2014: 975–978.
    [11] WANG Xin, WANG Ying, and SUN Hongbin. Exploring the combination of dempster-shafer theory and neural network for predicting trust and distrust[J]. Computational Intelligence and Neuroscience, 2016, 2016: 5403105.
    [12] 余永红, 高阳, 王皓, 等. 融合用户社会地位和矩阵分解的推荐算法[J]. 计算机研究与发展, 2018, 55(1): 113–124. doi: 10.7544/issn1000-1239.2018.20160704

    YU Yonghong, GAO Yang, WANG Hao, et al. Integrating user social status and matrix factorization for item recommendation[J]. Journal of Computer Research and Development, 2018, 55(1): 113–124. doi: 10.7544/issn1000-1239.2018.20160704
    [13] 王英, 王鑫, 左万利. 基于社会学理论的信任关系预测模型[J]. 软件学报, 2014, 25(12): 2893–2904.

    WANG Ying, WANG Xin, and ZUO Wanli. Trust prediction modeling based on social theories[J]. Journal of Software, 2014, 25(12): 2893–2904.
    [14] ZHENG Xiaoyao, LUO Yonglong, SUN Liping, et al. A novel social network hybrid recommender system based on hypergraph topologic structure[J]. World Wide Web, 2018, 21(4): 985–1013. doi: 10.1007/s11280-017-0494-5
    [15] TANG Jiliang, GAO Huiji, and LIU Huan. mTrust: discerning multi-faceted trust in a connected world[C]. The Fifth ACM International Conference on Web Search and Data Mining, Washington, USA, 2012: 93–102.
    [16] GAO Honghao, KUANG Li, YIN Yuyu, et al. Mining consuming behaviors with temporal evolution for personalized recommendation in mobile marketing apps[J]. Mobile Networks and Applications, 2020, 25(4): 1233–1248. doi: 10.1007/s11036-020-01535-1
    [17] LI Yangyang, WANG Dong, HE Haiyang, et al. Mining intrinsic information by matrix factorization-based approaches for collaborative filtering in recommender systems[J]. Neurocomputing, 2017, 249: 48–63. doi: 10.1016/j.neucom.2017.03.002
    [18] CHEN Yan, DAI Yongfang, HAN Xiulong, et al. Dig users’ intentions via attention flow network for personalized recommendation[J]. Information Sciences, 2021, 547: 1122–1135. doi: 10.1016/j.ins.2020.09.007
    [19] LI Jun, CHEN Chaochao, CHEN Huiling, et al. Towards context-aware social recommendation via individual trust[J]. Knowledge-Based Systems, 2017, 127: 58–66. doi: 10.1016/j.knosys.2017.02.032
    [20] BI Jianwu, LIU Yang, FAN Zhiping. A deep neural networks based recommendation algorithm using user and item basic data[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(4): 763–777. doi: 10.1007/s13042-019-00981-y
    [21] LUO Xin, ZHOU Mengchu, XIA Yunni, et al. An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1273–1284. doi: 10.1109/TII.2014.2308433
    [22] SALAKHUTDINOV R and MNIH A. Probabilistic matrix factorization[C]. The 20th International Conference on Neural Information Processing Systems, Red Hook, USA, 2007: 1257–1264.
    [23] DA’U A, SALIM N, RABIU I, et al. Weighted aspect-based opinion mining using deep learning for recommender system[J]. Expert Systems with Applications, 2020, 140: 112871. doi: 10.1016/j.eswa.2019.112871
    [24] JAWARNEH I M A, BELLAVISTA P, CORRADI A, et al. A pre-filtering approach for incorporating contextual information into deep learning based recommender systems[J]. IEEE Access, 2020, 8: 40485–40498. doi: 10.1109/ACCESS.2020.2975167
    [25] BATHLA G, AGGARWAL H, and RANI R. AutoTrustRec: recommender system with social trust and deep learning using AutoEncoder[J]. Multimedia Tools and Applications, 2020, 79(29): 20845–20860.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  903
  • HTML全文浏览量:  514
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 修回日期:  2021-06-30
  • 网络出版日期:  2021-07-09
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回