高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RISCV密码专用处理器能效概率模型与体系结构研究

李伟 别梦妮 陈韬 吴艾青 南龙梅

李伟, 别梦妮, 陈韬, 吴艾青, 南龙梅. RISCV密码专用处理器能效概率模型与体系结构研究[J]. 电子与信息学报, 2021, 43(6): 1541-1549. doi: 10.11999/JEIT210004
引用本文: 李伟, 别梦妮, 陈韬, 吴艾青, 南龙梅. RISCV密码专用处理器能效概率模型与体系结构研究[J]. 电子与信息学报, 2021, 43(6): 1541-1549. doi: 10.11999/JEIT210004
Wei LI, Mengni BIE, Tao CHEN, Aiqing WU, Longmei NAN. Research on Energy Efficiency Probability Model and Architecture of RISCV Cryptographic Processor[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1541-1549. doi: 10.11999/JEIT210004
Citation: Wei LI, Mengni BIE, Tao CHEN, Aiqing WU, Longmei NAN. Research on Energy Efficiency Probability Model and Architecture of RISCV Cryptographic Processor[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1541-1549. doi: 10.11999/JEIT210004

RISCV密码专用处理器能效概率模型与体系结构研究

doi: 10.11999/JEIT210004
详细信息
    作者简介:

    李伟:男,1983年生,副教授,博士生导师,研究方向为密码处理器设计、ASIC专用芯片设计

    别梦妮:女,1997年生,硕士生,研究方向为智能化可重构芯片电路与架构

    陈韬:男,1979年生,副教授,硕士生导师,研究方向为安全专用芯片设计

    吴艾青:男,1997年生,硕士生,研究方向为智能化可重构芯片电路与架构

    南龙梅:女,1981年生,博士生,研究方向为大规模集成电路设计、专用集成电路设计

    通讯作者:

    李伟 liwei12@fudan.edu.cn

  • 中图分类号: TN918.4; TP316.4

Research on Energy Efficiency Probability Model and Architecture of RISCV Cryptographic Processor

  • 摘要: 该文以高能效为目标,建立了密码专用处理器能效概率模型,并指导高能效密码专用处理器体系结构设计。该文将面向密码领域的专用指令处理器设计空间探索问题描述为“1”值在配置矩阵中的定位问题,通过引入概率矩阵进一步将定位问题转化为最优配置的概率问题,并基于机器学习思想提出了密码专用处理器最高能效概率模型。实验证明,该文提出的能效概率模型平均经过2300次迭代输出最终结果,且预测准确率达到92.7%。根据最高能效概率模型,对密码专用处理器设计空间进行探索,获取满足高能效需求的密码专用处理器运算单元集合,以扩展指令的方式将其集成到开源通用64位RISCV处理器核心Araine中,提出高能效密码专用处理器体系结构。将该处理器在CMOS 55 nm工艺下进行逻辑综合,结果表明,该文提出的RISCV密码专用处理器与扩展前相比面积增大了426874 μm2,关键延迟增加了0.51 ns,完成密码算法总时间面积积增幅之和为0.46,执行常见密码算法能效比在1.61~35.16 Mbps/mW范围内。
  • 图  1  概率模型学习框架

    图  2  概率矩阵转移算法流程图

    图  3  各密码算法所需原RISCV指令条数

    图  4  探索获取密码运算单元集合参数

    图  5  RISCV密码处理器核心结构示意图

    图  6  RISCV密码处理器核心实现算法的时间面积积

    图  7  RISCV密码处理器能效分析

    表  1  参数列表

    参数约束含义
    ${x_i}$$1 \le i \le n$可集成到处理器中的密码加速单元
    ${y_i}$$1 \le l \le m$算法集合中某目标密码算法
    ${t_i}$$1 \le i \le n$密码加速单元${x_i}$对应的关键延迟
    ${s_i}$$1 \le i \le n$密码加速单元${x_i}$对应的面积
    ${k_i}$${k_i} \in \left[ {0,1} \right]$表示单元${x_i}$是否为处理器扩展单元(1表示扩展)
    ${t_0}$表示未扩展密码运算单元时处理器关键延迟
    ${s_0}$表示为扩展密码运算单元时处理器面积
    ${C_l}$一种密码运算单元扩展配置下完成${y_l}$算法所需时钟周期数
    ${C_{l0}}$未扩展密码运算单元时完成${y_l}$算法所需时钟周期数
    下载: 导出CSV

    表  2  指令模板

    [31:26][25][24:20][1915][14:12][11:7][6:0]
    RLFunt7Rsd2Rsd1Funt3Funt5opcode
    SRIImm[5:0]Funt1Rsd2Rsd1Funt3Rdsopcode
    CFunt7Rs2Rs1Imm[7:0]opcode
    下载: 导出CSV

    表  3  RISCV密码专用处理器性能

    Ariane密码专用处理器
    关键延迟(ns)1.92.3
    面积(μm2)13211541748028
    下载: 导出CSV

    表  4  RISCV密码专用处理器实现算法所需指令周期数

    Ariane密码专用处理器
    AES29450402
    DES13472384
    SHA256117251192
    SNOWV105081026
    MD54210196
    下载: 导出CSV

    表  5  密码处理器能效对比分析(Mbps/mW)

    文献[17]文献[18]密码专用处理器
    AES9.3920.745.30
    DES2.916.913.03
    SHA2563.550.265.56
    SNOWV1.61
    MD53.300.6435.16
    下载: 导出CSV
  • [1] AZIZI O, MAHESRI A, LEE B C, et al. Energy-performance tradeoffs in processor architecture and circuit design: A marginal cost analysis[J]. ACM SIGARCH Computer Architecture News, 2010, 38(3): 26–36. doi: 10.1145/1816038.1815967
    [2] DUBACH C, JONES T M, and O’BOYLE M F P. Exploring and predicting the architecture/optimising compiler Co-design Space[C]. The 2008 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Atlanta, USA, 2008: 31–40.
    [3] LEE B C and BROOKS D M. Accurate and efficient regression modeling for microarchitectural performance and power prediction[C]. The 12th International Conference on Architectural Support for Programming Languages and Operating Systems, San Jose, USA, 2006: 185–194.
    [4] LEE B C and BROOKS D M. Illustrative design space studies with microarchitectural regression models[C]. The 13th IEEE International Symposium on High Performance Computer Architecture, Scottsdale, USA, 2007: 340–351.
    [5] LEE B C and BROOKS D. Applied inference: Case studies in microarchitectural design[J]. ACM Transactions on Architecture and Code Optimization, 2010, 7(2): 1–37.
    [6] PALERMO G, SILVANO C, and ZACCARIA V. ReSPIR: A response surface-based pareto iterative refinement for application-specific design space exploration[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(12): 1816–1829. doi: 10.1109/TCAD.2009.2028681
    [7] CHEN Tianshi, GUO Qi, TANG Ke, et al. ArchRanker: A ranking approach to design space exploration[C]. The 41st ACM/IEEE International Symposium on Computer Architecture (ISCA), Minneapolis, USA, 2014: 85–96.
    [8] CHEN Tianshi, CHEN Yunji, GUO Qi, et al. Effective and efficient microprocessor design space exploration using unlabeled design configurations[J]. ACM Transactions on Intelligent Systems, 2014, 5(1): 20.
    [9] LI W, ZENG Xiaoyang, NAN Longmei, et al. A reconfigurable block cryptographic processor based on VLIW architecture[J]. China Communications, 2016, 13(1): 91–99. doi: 10.1109/CC.2016.7405707
    [10] 孟沫舒. CISC处理器复杂指令的实现方法研究[D]. [硕士论文], 中国科学院研究生院, 2012.
    [11] SHAN Weiwei, ZHANG Shuai, XU Jiaming, et al. Machine learning assisted side-channel-attack countermeasure and its application on a 28-nm AES circuit[J]. IEEE Journal of Solid-State Circuits, 2020, 55(3): 794–804. doi: 10.1109/JSSC.2019.2953855
    [12] LI Wei, CHANG Zhongxiang, FENG Xiao, et al. Fast parallel extract-shift and parallel deposit-shift in general-purpose processors[C]. The 12th IEEE International Conference on Ubiquitous Intelligence and Computing, Beijing, China, 2015: 764–771.
    [13] 马超, 李伟, 戴紫彬, 等. 新型可重构移位-置换单元研究与设计[J]. 电子学报, 2017, 45(5): 1025–1034. doi: 10.3969/j.issn.0372-2112.2017.05.001

    MA Chao, LI Wei, DAI Zibin, et al. A novel reconfigurable rotation-permutation unit research and implementation[J]. Acta Electronica Sinica, 2017, 45(5): 1025–1034. doi: 10.3969/j.issn.0372-2112.2017.05.001
    [14] 马超, 戴紫彬, 李伟, 等. RPRU: 一种面向处理器的比特抽取与移位统一架构[J]. 计算机研究与发展, 2018, 55(2): 426–437. doi: 10.7544/issn1000-1239.2018.20160775

    MA Chao, DAI Zibin, LI Wei, et al. RPRU: A unified architecture for rotation and bit-extraction operations in general-propose processor[J]. Journal of Computer Research and Development, 2018, 55(2): 426–437. doi: 10.7544/issn1000-1239.2018.20160775
    [15] 徐光明, 徐金甫, 常忠祥, 等. 序列密码非线性反馈移存器的可重构研究[J]. 计算机应用研究, 2015, 32(9): 2823–2826. doi: 10.3969/j.issn.1001-3695.2015.09.062

    XU Guangming, XU Jinfu, CHANG Zhongxiang, et al. Reconfigurability study on nonlinear feedback shift registers in stream cipher[J]. Application Research of Computers, 2015, 32(9): 2823–2826. doi: 10.3969/j.issn.1001-3695.2015.09.062
    [16] LIU Bin and BAAS B M. Parallel AES encryption engines for many-core processor arrays[J]. IEEE Transactions on Computers, 2013, 62(3): 536–547. doi: 10.1109/TC.2011.251
    [17] LI Wei, ZENG Xiaoyang, DAI Zibin, et al. A high energy-efficient reconfigurable VLIW symmetric cryptographic processor with loop buffer structure and chain processing mechanism[J]. Chinese Journal of Electronics, 2017, 26(6): 1161–1167. doi: 10.1049/cje.2017.06.010
    [18] SAYILAR G and CHIOU D. Cryptoraptor: High throughput reconfigurable cryptographic processor[C]. 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, USA, 2014: 155–161.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  258
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-04-07
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回