高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于施密特触发的高鲁棒性亚阈值标准单元

张跃军 韩金亮 张会红

张跃军, 韩金亮, 张会红. 基于施密特触发的高鲁棒性亚阈值标准单元[J]. 电子与信息学报, 2021, 43(6): 1550-1558. doi: 10.11999/JEIT210001
引用本文: 张跃军, 韩金亮, 张会红. 基于施密特触发的高鲁棒性亚阈值标准单元[J]. 电子与信息学报, 2021, 43(6): 1550-1558. doi: 10.11999/JEIT210001
Yuejun ZHANG, Jinliang HAN, Huihong ZHANG. High-Robust Sub-threshold Standard Cells Using Schmitt Trigger[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1550-1558. doi: 10.11999/JEIT210001
Citation: Yuejun ZHANG, Jinliang HAN, Huihong ZHANG. High-Robust Sub-threshold Standard Cells Using Schmitt Trigger[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1550-1558. doi: 10.11999/JEIT210001

基于施密特触发的高鲁棒性亚阈值标准单元

doi: 10.11999/JEIT210001
基金项目: 国家自然科学基金(61871244, 61874078),专用集成电路与系统国家重点实验室开放研究课题基(2019KF002),宁波市公益性计划项目(202002N3134),宁波市自然科学基金(202003N4107)
详细信息
    作者简介:

    张跃军:男,1982年生,副教授,研究方向为低功耗、高信息密度集成电路理论和设计、安全芯片理论和设计

    韩金亮:男,1996年生,硕士生,研究方向为低功耗集成电路设计

    张会红:女,1976年生,副教授,研究方向为控制理论与应用、低功耗集成电路理论与优化设计

    通讯作者:

    张会红 zhanghuihong@nbu.edu.cn

  • 中图分类号: TN492

High-Robust Sub-threshold Standard Cells Using Schmitt Trigger

Funds: The National Natural Science Foundation of China (61871244, 61874078), The Open Research Project Fund of the State Key Laboratory of AISC and Systems (2019KF002), The S&T Plan of Ningbo Science and Technology Department (202002N3134), The Ningbo Natural Science Foundation (202003N4107)
  • 摘要: 亚阈值电路是低功耗重要发展方向之一。随着电源电压降低,晶圆代工厂提供的标准单元电路性能容易受噪声和工艺偏差的影响,已经成为制约亚阈值芯片的瓶颈。该文提出一种基于施密特触发(ST)与反向窄宽度效应(INWE)的亚阈值标准单元设计方案。该方案首先利用ST的迟滞效应与反馈机制,在电路堆叠结点处添加施密特反馈管以优化逻辑门、减少漏电流、增强鲁棒性;然后,采用INWE最小宽度尺寸与分指版图设计方法,提高电路的开关阈值与MOS管的驱动电流;最后,在TSMC 65 nm工艺下构建标准单元的物理库、逻辑库和时序库,完成测试验证。实验结果表明,所设计的亚阈值标准单元与文献相比,功耗降低7.2%~15.6%,噪声容限提升11.5%~15.3%,ISCAS测试电路的平均功耗降低15.8%。
  • 图  1  6T施密特触发器及其泄漏路径

    图  2  6T施密特触发器的VTC曲线和开关电流比率

    图  3  施密特触发逻辑门

    图  4  半堆叠式ST亚阈值逻辑门

    图  5  NAND电路版图

    图  6  NOR电路版图

    图  7  SNM测试电路与蝶形图

    图  8  不同逻辑单元的静态噪声容限

    图  9  改进的ST电路与标准单元的延时、漏流、PDP及面积的对比

    表  1  基准测试电路验证与对比

    基准测试电路面积(µm2)单元数量功耗(mW)延时(nS)
    Cov_lib本文Cov_lib本文Cov_lib本文Cov_lib本文
    c4323014471391481.20E-021.01E-0228.2027.18
    c4995717421931803.48E-023.20E-0223.0121.53
    c8806238692402592.24E-021.86E-0225.0722.40
    c3540194226417687957.21E-026.10E-0237.2332.40
    c755231933726124611611.65E-011.26E-0138.8137.01
    下载: 导出CSV
  • [1] WANG A and CHANDRAKASAN A. A 180-mV subthreshold FFT processor using a minimum energy design methodology[J]. IEEE Journal of Solid-State Circuits, 2005, 40(1): 310–319. doi: 10.1109/JSSC.2004.837945
    [2] SHI Weiwei, PENG Panfeng, and CHOY C S. A 90nm passive RFID tag’s custom baseband processor for subthreshold operation below 0.3V[J]. Chinese Journal of Electronics, 2017, 26(4): 720–724. doi: 10.1049/cje.2017.04.006
    [3] WEN Liang, NAN Longmei, ZHANG Jing, et al. 65 nm sub-threshold logic standard cell library using quasi-schmitt-trigger design scheme and inverse narrow width effect aware sizing[J]. IET Circuits, Devices & Systems, 2020, 14(3): 303–310. doi: 10.1049/iet-cds.2019.0028
    [4] ZHOU Jun, JAYAPAL S, BUSZE B, et al. A 40 nm dual-width standard cell library for near/sub-threshold operation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(11): 2569–2577. doi: 10.1109/TCSI.2012.2190674
    [5] 金威. 面向超低功耗的抗PVT波动电路设计技术研究[D]. [博士论文], 上海交通大学, 2017.

    JIN Wei. Research on ultra-low power PVT tolerant circuits design techniques[D]. [Ph. D. dissertation], Shanghai Jiao Tong University, 2017.
    [6] MORRIS J. A novel deep submicron bulk planar sizing strategy for low energy subthreshold standard cell libraries[D]. [Ph. D. dissertation], Newcastle University, 2018.
    [7] MIYAMOTO M, OHTA H, KUMAGAI Y, et al. Impact of reducing STI-induced stress on layout dependence of MOSFET characteristics[J]. IEEE Transactions on Electron Devices, 2004, 51(3): 440–443. doi: 10.1109/TED.2003.822877
    [8] ALAM N, ANAND B, and DASGUPTA S. The impact of process-induced mechanical stress in narrow width devices and circuit design issues[C]. 2012 International Symposium on Electronic System Design, Kolkata, India, 2012: 213–215. doi: 10.1109/ISED.2012.42.
    [9] REYNDERS N and DEHAENE W. Variation-resilient building blocks for ultra-low-energy sub-threshold design[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59(12): 898–902. doi: 10.1109/TCSII.2012.2231022
    [10] LOTZE N and MANOLI Y. A 62mV 0.13μm CMOS standard-cell-based design technique using schmitt-trigger logic[C]. Proceedings of 2011 IEEE International Solid-State Circuits Conference, San Francisco USA, 2011: 340–342. doi: 10.1109/ISSCC.2011.5746345.
    [11] SHARMA P, JAIN P, and DAS B P. An optimal device sizing for a performance-driven and area-efficient subthreshold cell library for IoT applications[J]. Microelectronics Journal, 2019, 92: 104613. doi: 10.1016/j.mejo.2019.104613
    [12] NISHIZAWA S, ISHIHARA T, and ONODERA H. A flexible structure of standard cell and its optimization method for near-threshold voltage operation[C]. The 2012 IEEE 30th International Conference on Computer Design, Montreal, Canada, 2012: 235–240. doi: 10.1109/ICCD.2012.6378646.
    [13] GEMMEKE T, ASHOUEI M, LIU Bo, et al. Cell libraries for robust low-voltage operation in nanometer technologies[J]. Solid-State Electronics, 2013, 84: 132–141. doi: 10.1016/j.sse.2013.02.006
    [14] AYERS J E. Digital Integrated Circuits: Analysis and Design[M]. 2nd ed. Boca Raton: CRC Press, 2010: 256–257.
    [15] HSIAO S F, TSAI M Y, and WEN C S. Low area/power synthesis using hybrid pass transistor/CMOS logic cells in standard cell-based design environment[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57(1): 21–25. doi: 10.1109/TCSII.2009.2034198
    [16] JUN J, SONG J, and KIM C. A near-threshold voltage oriented digital cell library for high-energy efficiency and optimized performance in 65nm CMOS process[J] IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(5): 1567–1580. doi: 10.1109/TCSI.2017.2758793.
    [17] BORTOLON F T, MOREIRA M T, MORAES F G, et al. Estimation methods for static noise margins in CMOS subthreshold logic circuits[C]. The 30th Symposium on Integrated Circuits and Systems Design, Fortaleza, Brazil, 2017: 90–95. doi: 10.1145/3109984.3109998.
    [18] 丁杰. 0.6V 40nm低电压标准单元库设计[D]. [硕士论文], 东南大学, 2016.

    DING Jie. Design of 40nm standard cell library for 0.6V low voltage[D]. [Master dissertation], Southeast University, 2016.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1080
  • HTML全文浏览量:  969
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-04-17
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回