高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气敏传感器的高稳态物理不可克隆函数发生器

汪鹏君 李乐薇 郑雁公 李刚

汪鹏君, 李乐薇, 郑雁公, 李刚. 基于气敏传感器的高稳态物理不可克隆函数发生器[J]. 电子与信息学报, 2021, 43(6): 1596-1602. doi: 10.11999/JEIT201104
引用本文: 汪鹏君, 李乐薇, 郑雁公, 李刚. 基于气敏传感器的高稳态物理不可克隆函数发生器[J]. 电子与信息学报, 2021, 43(6): 1596-1602. doi: 10.11999/JEIT201104
Pengjun WANG, Lewei LI, Yangong ZHENG, Gang LI. High Steady-state Physical Unclonable Function Generator Based on Gas Sensors[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1596-1602. doi: 10.11999/JEIT201104
Citation: Pengjun WANG, Lewei LI, Yangong ZHENG, Gang LI. High Steady-state Physical Unclonable Function Generator Based on Gas Sensors[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1596-1602. doi: 10.11999/JEIT201104

基于气敏传感器的高稳态物理不可克隆函数发生器

doi: 10.11999/JEIT201104
基金项目: 国家自然科学基金(61874078, 61871244),国家重点研发计划(2018YFB2202100),宁波市公益性计划(202002N3134),宁波大学大学生科技创新项目(2021SRIP1327)
详细信息
    作者简介:

    汪鹏君:男,1966年生,教授,研究方向为集成电路设计、信息安全等技术及其相关理论

    李乐薇:女,1997年生,硕士生,研究方向为集成电路设计、信息安全等技术及其相关理论

    郑雁公:男,1983年生,副教授,研究方向为气敏材料以及沸石相关理论

    李刚:男,1988年生,讲师,研究方向为集成电路设计、信息安全等技术及其相关理论

    通讯作者:

    汪鹏君 wangpengjun@wzu.edu.cn

  • 中图分类号: TN919; TP212

High Steady-state Physical Unclonable Function Generator Based on Gas Sensors

Funds: The National Natural Science Foundation of China(61874078, 61871244), The National Key Research and Development Program of China(2018YFB2202100), The Ningbo Public Welfare Projects(202002N3134), The Science and Technology Innovation Project of Ningbo University(2021SRIP1327)
  • 摘要: 物联网(IoT)作为战略性新兴产业已经上升为国家发展重点,但在实际应用中也面临各种安全威胁。确保资源受限物联网系统数据传输、处理和存储的安全已成为研究热点。该文通过对物理不可克隆函数(PUF)和传感器制备工艺偏差的研究,提出一种基于气敏传感器的高稳态物理不可克隆函数发生器设计方案。该方案首先采用静电喷雾沉积(ESD)方式生成具有高比表面积特性的纳米材料,结合高温煅烧技术制备Pd-SnO2气敏传感器;其次采集Pd-SnO2气敏传感器在不同气体浓度、环境温度、加热电压条件下对甲醛气体的响应数据;然后利用随机阻值多位平衡算法比较不同簇气敏传感器响应的阻值,进而产生多位高稳态PUF数据;最后对所设计PUF发生器的安全性和可靠性进行评估。实验结果表明,该PUF发生器的随机性为97.03%、可靠性为97.85%、唯一性为49.04%,可广泛应用于物联网安全领域。
  • 图  1  气敏传感器检测系统结构示意图

    图  2  静电喷雾装置示意图

    图  3  传感器示意图

    图  4  测试平台示意图

    图  5  不同分辨率下的SEM表征

    图  6  XRD表征

    图  7  传感器响应

    图  8  随机性概率分布

    图  9  汉明距离分布

    图  10  不同电压下的可靠性

    图  11  400 s内的可靠性

    表  1  8位随机阻值平衡算法伪代码

     (1) int bit[place]
     (2) int lef[3]
     (3) int r[3]
     (4) double v[8]
     (5) i=0
     (6) do {lsum=v[(i+lef[0])mod 8]+v[(i+lef[1])mod 8]+v[(i+lef[2])   mod 8]
     (7) rsum=v[(i+r[0]) mod 8]+v[(i+r[1]) mod 8]+v[(i+r[2])mod 8]
     (8) if lsum>rsum
     (9) then bits[palce]=1
     (10) else bits[place]=0
     (11) place=place+1}
     (12) while(i<8)
     (13) return
    下载: 导出CSV

    表  2  与相关文献的比较结果(%)

    文献PUF类型响应机制描述唯一性可靠性
    仲裁器[5]硅PUF利用时延差异产生响应49.8892.88
    SRAM[8]硅PUF利用SRAM单元上电差异产生响应49.697.86
    能量收集器[11]传感器PUF利用太阳能电池对光强的偏差输出产生响应92.97
    MEMS传感[14]传感器PUF利用陀螺仪的输出产生响应42.6492.17
    压电传感器[15]传感器PUF利用压电传感器对电压源的偏差输出产生响应96.07
    本文传感器PUF利用气敏传感器对气体感应偏差产生响应49.0497.85
    下载: 导出CSV
  • [1] BUTUN I, OSTERBERG P, and SONG H. Security of the Internet of Things: Vulnerabilities, attacks, and countermeasures[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 616–644. doi: 10.1109/COMST.2019.2953364
    [2] SAIRAM R, BHUNIA S, THANGAVELU V, et al. NETRA: Enhancing IoT security using NFV-based edge traffic analysis[J]. IEEE Sensors Journal, 2019, 19(22): 4660–4671. doi: 10.1109/JSEN.2019.2900097
    [3] KOYUICEM D, BOUABDALLAH A, and LAKHLEF H. Internet of Things security: A top-down survey[J]. Computer Networks, 2018, 141(2018): 199–221. doi: 10.1016/j.comnet.2018.03.012
    [4] PAPPU R, RECHT B, TAYLOR J, et al. Physical one-way functions[J]. Science, 2002, 297(5589): 2026–2030. doi: 10.1126/science.1074376
    [5] 龚越, 叶靖, 胡瑜, 等. 内建自调整的仲裁器物理不可克隆函数[J]. 计算机辅助设计与图形学学报, 2017, 29(9): 1734–1739. doi: 10.3969/j.issn.1003-9775.2017.09.018

    GONG Yue, YE Jing, HU Yu, et al. Built-in self-adjusting arbiter PUF[J]. Journal of Computer-Aided Design &Computer Graphics, 2017, 29(9): 1734–1739. doi: 10.3969/j.issn.1003-9775.2017.09.018
    [6] 孙子文, 叶乔. 利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究[J]. 电子与信息学报, 2021, 43(1): 234–241. doi: 10.11999/JEIT191013

    SUN Ziwen and YE Qiao. Study on the physical unclonable function of the reliable information entropy extracted by the frequency characteristic of oscillating ring[J]. Jounal of Electronics &Information Technology, 2021, 43(1): 234–241. doi: 10.11999/JEIT191013
    [7] LI Gang, WANG Pengjun, MA Xuejiao, et al. A 215-F2 bistable physically unclonable function with an ACF of < 0.005 and a native bit instability of 2.05% in 65-nm CMOS process[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(11): 2290–2299. doi: 10.1109/TVLSI.2020.3014892
    [8] GOLANBARI M, KIAMEHR S, BISHNOI R, et al. Reliable memory PUF design for low-power applications[C]. The 19th International Symposium on Quality Electronic Design, Santa Clara, USA, 2018: 207−213. doi: 10.1109/ISQED.2018.8357289.
    [9] 张培勇, 袁晓东, 王雪洁, 等. 基于D触发器的物理不可克隆函数[J]. 浙江大学学报(理学版), 2019, 46(1): 35–41. doi: 10.3785/j.issn.1008-9497.2019.01.005

    ZHANG Peiyong, YUAN Xiaodong, WANG Xuejie, et al. D flip-flop based physical unclonable function[J]. Journal of Zhejiang University (Science Edition), 2019, 46(1): 35–41. doi: 10.3785/j.issn.1008-9497.2019.01.005
    [10] FUKUSHIMA K, YOSHIMURA A, KIYOMOTO S, et al. Evaluation of software PUF based on gyroscope[C]. The 15th International Conference on Information Security Practice and Experience, Kuala Lumpur, Malaysia, 2019: 232-247. doi: 10.1007/978-3-030-34339-2_13.
    [11] KUMAR S, LABRADO C, BADHAN R, et al. Solar cell based physically unclonable function for cybersecurity in IoT devices[C]. 2018 IEEE Computer Society Annual Symposium on VLSI, Hong Kong, China, 2018: 697–702. doi: 10.1109/ISVLSI.2018.00131.
    [12] ROSENFELD K, GAVAS E, and KARRI R. Sensor physical unclonable functions[C]. 2010 IEEE International Symposium on Hardware-Oriented Security and Trust, Anaheim, USA, 2010: 112–117. doi: 10.1109/HST.2010.5513103.
    [13] DEY S, ROY N, XU Wenyuan, et al. AccelPrint: Imperfections of accelerometers make smartphones trackable[C]. Network and Distributed System Security Symposium, San Diego, USA, 2014: 1–16. doi: 10.14722/ndss.2014.23059.
    [14] AYSU A, GHALATY N, FRANKLIN Z, et al. Digital fingerprints for low-cost platforms using MEMS sensors[C]. Workshop on Embedded Systems Security, Montreal Quebec, Canada, 2013: 1-6. doi: 10.1145/2527317.2527319.
    [15] LABRADO C and THAPLIYAL H. Design of a piezoelectric-based physically unclonable function for IoT security[J]. IEEE Internet of Things Journal, 2019, 6(2): 2770–2777. doi: 10.1109/JIOT.2018.2874626
    [16] KANG D, KIM J, KIM I, et al. Experimental qualification of the process of electrostatic spray deposition[J]. Coatings, 2019, 9(5): 294–312. doi: 10.3390/coatings9050294
    [17] 刘兆香, 刘勇, 王欣, 等. 静电纺丝过程中泰勒锥、射流鞭动和电晕现象分析[J]. 塑料, 2012, 41(3): 29–34. doi: 10.3969/j.issn.1001-9456.2012.03.010

    LIU Zhaoxiang, LIU Yong, WANG Xin, et al. Phenomena analysis of taylor cone, jet whipping and corona in process of electrospinning[J]. Plastic, 2012, 41(3): 29–34. doi: 10.3969/j.issn.1001-9456.2012.03.010
    [18] SHIN Y, HOHMAN M, BRENNER M, et al. Experimental characterization of electrospinning: The electrically forced jet and instabilities[J]. Polymer, 2001, 42(25): 9955–9967. doi: 10.1016/S0032-3861(01)00540-7
    [19] YI J, LEE J, and PARK W. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors[J]. Sensors & Actuators, 2011, 155(1): 264–269. doi: 10.1016/j.snb.2010.12.033
    [20] 李刚, 汪鹏君, 张跃军, 等. 基于65 nm工艺的多端口可配置PUF电路设计[J]. 电子与信息学报, 2016, 38(6): 1541–1546. doi: 10.11999/JEIT150968

    LI Gang, WANG Pengjun, ZHANG Yuejun, et al. Design of multi-port configurable PUF circuit based on 65 nm technology[J]. Jounal of Electronics &Information Technology, 2016, 38(6): 1541–1546. doi: 10.11999/JEIT150968
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  598
  • HTML全文浏览量:  191
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-04-12
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回